
D-1468 ROCESS SNCHRONIZATION AND DATA COMMUNICATION SET&IEEN 1/2
PROCESSES IN REAL TIME LOCRL AREA NETMORKS(U) NAVAL

UCSSIEDPOSTGRADUATE SCHOOL MONTEREY CA R NAEGER DEC 85IUNCLASSIFIED F/G 17/2 ML

EEEEEEEE|hEEEE
EEBhhEEEEEBhhE
ElhEEEEEEEEBhI
EEEEEEElhlhEEI
EEEEEEEEEEEEEI
ElhEEEEEEElhh.

ALI'

..
MICROCOPY RESOLUTION TEST CHART

-'lNATIONAL
BUREAU OF STANDARDS- I963-A

u1..V

!If,_ l
2

-Jwi

-,u"rN

NAVAL POSTGRADUATE SCHOOL
Monterey, California

CID

00

DTIC
!-LECTE

D

THESIS
PROCESS SYNCHRONIZATION AND DATA
COMMUNICATION BETWEEN PROCESSES
IN REAL TIME LOCAL AREA NETWORKS

0by

Reinhard Haeger

December 1985

SThesis Advisor: Uno R. Kodres .o

'

SECURITY CLASSIFICATION OF THIS PAGE / ,, D"

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/ AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE distribution is unlimited

0 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6,4. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

Naval Postgraduate School 52 Naval Postgraduate School

6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5100 Monterey, CA 93943-5100

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11 TITLE (Include Security Classification)
PROCESS SYNCHRONIZATION AND DATA COMMUNICATION BETWEEN PROCESSES IN REAL
TIME LOCAL AREA NETWORKS
1'2 PERSONAL AUTHOR(S)
Haeger, Reinhard

13a TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) u1. PAGE COUNT
Master's Thesis FROM TO 1985 December I 113

16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Distributed Processing, MULTIBUS, CP/M-86,
Ethernet, Local Area Network, Shared Memory,
Process Synchronization, Data Communication ,-

'98--STRACT (Continue on reverse if necessary and identify by block number)

This thesis extends the multi-computer real-time executive, MCORTEX. The
multiple cluster system RTC*- (Real Time Cluster Star), consisting of
clusters of single board computers (INTEL iSBC 86/12A), which are connected
via an Ethernet Local Area Network, serves as a hardware basis for the
implementation of extended MCORTEX.
The extension upgrades MCORTEX to system-wide synchronization and general
data communication between any processes in the system. An intercluster
s"jared memory model is developed, that partially replicates intracluster
shared memory, such that shared data replication is minimized and the
system's processing speed is maximized.
This implementation, by transmitting produced shared data to all consuming
clusters as soon as possible after production, guarantees that only
cluster local hits occur in the system. Shared memory space is used(Cont)

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
E)UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0 DTIC USERS UNCLASSIFIED

22 NAN. OF RESPONSIBLE IN VIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
ro U R. Kores (408) 646-2197 52Kr

D FORM 1473,84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.i 1

.*~' K' '4 ~ '*~~'~ ~ 4'4/~. ,,*. ~ , ~ . *.. .**

- ' SECURITY CLASSIFICATION OF THIS PAGE (Wee. Data Eatme

19. ABSTRACT (Continued)

efficiently by transmitting shared data to consuming clusters
only, and by the ability to store shared data contiguouijly in
intracluster shared memory.

S, N -0 - N 1-6 0
I-2

SEUIYC.S'4CTO FTI AE.e aaEtrd

Approved for public release; distribution is unlimited.

Process Synchronization and Data Communication
between

Processes in Real Time Local Area Networks

by

Reinhard Haeger

LietenntCommander, Federal German Navy

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 1985

Author:
xeinnarp Haeger

Approved by:
Aproe b: fO K. K es , mniesis Advisor

~aryxer, -econd Readler

Vincent 1. Lum, Cnairman,
Department of Computer Science

DenoInformatoy Sciences

.4-3

--- 3

ABSTRACT

This thesis extends the multi-computer real-time

executive, MCORTEX. The multiple cluster system RTC* (Real

Time Cluster Star), consisting of clusters of singie board

computers (INTEL iSBC 86/12A), which are connected via an

Ethernet Local Area Network, serves as a hardware basis for

the implementation of extended MCORTEX.

The extension upgrades MCORTEX to system-wide

synchronization and general data communication between any

- processes in the system. An intercluster shared memory model

is developed, that partially replicates intracluster shared

memory, such that shared data replication is minimized and

the system's processing speed is maximized.

This implementation, by transmitting produced shared

data to all consuming clusters as soon as possible after

production, guarantees that only cluster local hits occur in

the system. Shared memory space is used efficiently by

transmitting shared data to consuming clusters only, and by

the ability to store shared data contiguously in

intracluster shared memory.

4

ic.

4°-"

DISCLAIMER

Some terms used in this thesis are registered trademarks

of commercial products. Rather than attempt to cite each

occurrence of a trademark, all trademarks appearing in this

thesis will be listed below, following the firm holding the

trademark:

1. INTEL Corporation, Santa Clara, California

INTEL

MULTIBUS

iSBC 86/12A

8086

2. Digital Research, Pacific Grove, California

PL/I-86

LINK86

ASM86

DDT86

3. XEROX Corporation, Stamford, Connecticut

Ethernet Local Area Network

4. InterLAN Corporation, Westford, Massachusetts

N13010 Ethernet Communication Controller Board

5

5

! / ."/- " - " *'. '' .''- "- ,, , . " " "' " " .\ -i ' "-. -'. 0 ." -,.'. '.-''". "

TABLE OF CONTENTS

I. INTRODUCTION. 11

A. DISCUSSION...................11.

1. General..................11

2. Systems Architecture 11

3. Specific 15

B. BACKGROUND 15

C, STRUCTURE OF THE THESIS.............16

Ii. ORGANIZATION OF INTERCLUSTER SHARED MEMORY 18

A. SHARED MEMORY MODELS 18

1. No Replication 18

2. Total Replication..............20

3. Partial Replication.............21

III. ORGANIZATION OF INTRACLUSTER. SHARED MEMORY 22

A. CLASSES OF SHARED DATA 22

B. SYSTEM SHARED DATA 23

C. USER SHARED DATA 23

1. Organization of Shared Data 24

2. Storage of User Shared Data 25

D. RELATION BETWEEN SHARED DATA 25

1. The Ethernet Request Block. 26

42. User Shared Data Block 28

E. INTRACLUSTER DATA FLOW 30

IV. INTERCLUSTER DATA SHARING IN RTC*. 33

A. INTERCLUSTER CONNECTION.............33

1. The Ethernet 33

2. The Ethernet Packet.............34

B. DRIVER - ECCB MESSAGE HANDOVER. 37

6

1. Transmit Data Block.............37

2. Receive Data Block 37

C. MESSAGE TRANSMISSION AND RECEPTION.39

1. The Relation Table 39

2. Data Format................42

3. Message Transmission 43

4. Message Reception..............46

D. DATA SHARING 48

V. CONCLUSION......................52

APPENDIX A: PROCEDURE MAKETABLE 54

APPENDIX B: PROCEDURE MAKEMESSAGE 56

APPENDIX C: PROCEDURE PROCESSPACKET 59

APPENDIX D: THE DRIVER 62

APPENDIX E: THE DEMONSTRATION PROGRAM...........94

APPENDIX F: SYSTEM INITIALIZATION 108

LIST OF REFERENCES....................111

INITIAL DISTRIBUTION LIST. 112

Accesion For.

NTIS CRA&I
DTIC TAB 0
U..anrnox~ced 1i

By
Di-t ib to i0

Availability Codes j
.1~ Avail i an or

Di.st Sp; cial

7 ,j-

s--

4, LIST OF TABLES

I FILE RELATION.DAT 42

II FILE SHARE.DCL 49

III FILE POINTER.ASS 50

i

.-,. .,

LE "j

-£'-" 8

LIST OF FIGURES

1.1 Hardware Configuration of RTC* 12

1.2 Software Configuration of RTC* 14

2.1 Intercluster Shared Memory Models 19

3.1 The Ethernet Request Block 27

3.2 User Shared Data Queues 29

3.3 Intracluster Data Flow 31

4.1 The Ethernet Packet35

4.2 Transmit Data Block and Receive Data Block 38

4.3 The Relation Table 41

4.4 Message Transmission44
4.5 Message Reception47

9

I

a", ., ., : ,:. .. .,, .. -.... , . , ;.,-- < .- ,-. --. :. ,:-:

ACKNOWLEDGEMENT

" To Karin, Svenja, and Arne in appreciation of their

effort to keep the environment as stressfree as possible.

I could not have done this thesis without their patience.

AX

10
X,

-. •

I. INTRODUCTION

A. DISCUSSION

1. General

The goal of this thesis is to extend the existing

version of the distributed multi-computer real time

executive (E-MCORTEX) in order to provide systemwide

interprocess data communication.

The existing MCORTEX version was provided by David

Brewer in December 1984 [Ref. 1], and contributes to the

research work done by the AEGIS Modeling Group at the Naval

Postgraduate School (NPS).

The objective of this project group is research on

time critical processing required by modern anti-air warfare

(AAW) systems. The project group chose the AN/SPY-lA phased

array radar processing unit of the AEGIS weapon system due

to its challenging time critical processing demands. A

further fundamental objective of the AEGIS Modeling Group is

to use off the shelf components within the AEGIS weapons

system as a low cost approach, and to upgrade reliability of

the system by replacing the AN/UYK-7 central computer of the

AN/SPY-lA system by distributed computing power. Rapid

repair turnaround and low component replacement cost in the

system in case of failure, and graceful degradation of the

system are of utmost importance especially for military

applications.

The available lab system at NPS is made up of single

board computers building MULTIBUS clusters which are

connected via an Ethernet Local Area Network.

2. Systems Architecture

The lab system's hardware configuration shown in

Figure 1.1 consists of two clusters with up to four Intel

iSBC 86/12A single board computers (SBC) in a cluster at the

present time. A MULTIBUS serves as the interconnection

-pii

711

9--E

Har

,Disk

MULTIBUS

REMEV

Har

aDisk

Como

Ethernet

Figure 1.1 Hardware Configuration of RTC*.

12

medium for all cluster elements, i.e. besides the SBC's, a

hard disk drive, two extra memory boards, and an interLAN

N13010 Ethernet Communication Controller Board (ECCB). The

ECCB provides, via a transceiver, the cluster's connection

to the Ethernet.

With the MULTIBUS as an intracluster bus and the

Ethernet as an intercluster bus the system's configuration

looks similar to Carnegie Mellon's Cm* [Ref. 2]. Due to its

goal to serve time critical applications in a real time

environment the AEGIS lab system is known as Real-Time

Cluster Star (RTC*).

The system's software configuration shown in Figure

1.2 consists of a MCORTEX kernel on every SBC, MCORTEX

global data on one extra memory board, known as Common

Memory, and Shared Memory on the second extra memory board

in every cluster. Besides the MCORTEX kernel, also the

CP/M-86 operating system and DDT-86 are available in local

RAM of every SBC, and the user area provides space for

application programs. The CP/M Multiuser area is kept on the

Common Memory board, while Shared Memory houses user shared

data and some system's shared data.

SBC 1 in every cluster is dedicated to a systems

program known as the system device handler and packet

processor (called a driver in the following). Part of

Shared Memory is used as a data exchange buffer between any

SBC in the cluster and the driver board, SBC 1, for Ethernet

transmission requests. Another part serves as data exchange

buffer between the driver board and the ECCB for handing

over messages which are to be transmitted and messages which

have been received.

The distributed MCORTEX kernels provide the

multiprocessing capability of the system. System processes

and user processes share the CPU of a respective SBC. David

Brewer gives an in depth discussion of the interrelationship

aand the scheduling of processes.

13

.

,,. 0000004390 CP/M-86 OS CP/M-86 OS CP/M-86 OSi 04390

User Area User Area Driver
,. OB200•B200,Loader Loader Loader

.B700 MCORTEX MCORTEX MCORTEX

00800 Kernel Kernel Kernel

OFFFF DDT 86 DDT 86 DDT 86

Local RAM Local RAM Local RAM

SBC n SBC 2 SBC 1

EOOOO

CP/M

Multi User

Area
E5300

MCORTEX

Global Data

E7FFF_

Common Memory

10000

10078 Ethernet Request Bl.

Transmit Data Block
10666

Receive Data Block
10C58

User Shared Data

Block

17FFF
6

Shared Memory

Figure 1.2 Software Configuration of RTC*.

14

6:

The process synchronization is accomplished using
eventcounts and sequencers as developed by Reed and Kanodia

[Ref. 3]. Eventcounts synchronize all processes, those

running on the same board as well as those running on
different boards in the same cluster as well as those

running on boards in different clusters.

It is important to recognize that eventcounts are

also data, even though a special kind of data.

3. Specific

A typical application situation for systems like
RTC* is time critical gathering of data by real time sensors

(e.g. radar), processing these data in the context of

information gathered by other sensors, and executing

specific algorithms in order to produce data that are

consumed by effectors (e.g. missile launchers).

Under the realistic assumption that sensors and
effectors are locally distributed and that sensor-effector

coupling or grouping must be kept flexible for the sake of

weapon system survivability, it is obvious that the
different processing modules cannot be kept together close
enough in order to use shared memory in the conventional

sense.

B. BACKGROUND

A series of theses starting with one by W.J Wasson, June
1980, which defined the detailed design of MCORTEX based on

MULTICS and the use of eventcounts [Ref. 4], developed a

highly modular system, hardwarewise and softwarewise, using

commercially available components, that guarantee low cost,

availability, and reliability. D.K.Rapantzikos, March 1981,

provided initial implementation [Ref. 5], E.R. Cox, December

1981, refinement [Ref. 6], and S.G. Klinefelter, June 1982,

dynamical interaction with the operating system during

execution [Ref. 7].

W.R. Rowe, June 1984, put the multiuser CP/M-86
operating system under control of MCORTEX [Ref. 8], and

15

~-:

finally D.J. Brewer, December 1984, extended MCORTEX to a

multicluster system without shared memory, using Ethernet as

cluster interface.

The system's functioning was shown for the extended

MCORTEX version up to the level of systemwide process

synchronization using distributed eventcounts in a

multicluster environment. Even though eventcounts are data

also, and communicating eventcounts is shared data

communication, this special shared data communication lacks

the ability of user shared data distribution over the total

system.

This thesis tackles this important step.

C. STRUCTURE OF THE THESIS

The goals of this thesis are:

1. To extend the existing MCORTEX version, that provides

process synchronization and single cluster

inter-systemprocess data communication using an intracluster

shared memory, to multicluster general inter-process data

communication in an Ethernet Local Area Network environment.

2. To develop an appropriate model for intercluster

shared memory to be used in the system.

3. To accomplish the extension without changing the

MCORTEX kernel, but modifying PL/I-86 modules only.

Chapter I discusses the objective of the AEGIS Modeling

Group at the Naval Postgraduate School, gives an

introductory system's overview, a brief development history

of the system, and outlines the goals of this thesis.

Chapter II discusses three different approaches studied

in developing the concept of intercluster shared memory for

RTC*, and the reasoning that lead to the decision for the

chosen model.

Chapter III presents the organization of intracluster

shared memory, the use of the user shared data area, and the

intracluster data flow.

16

I : . . .' .- -...- ,, -. -... -: . . - .. --.;... :? v . -.. .. --.'. .". -.:... ..:. - ." -'- .

Chapter IV provides an in depth presentation of the

development and realization of intercluster data sharing in

RTC*.

Chapter V summarizes the current state of the system

and addresses possible future enhancements.

17

4V

II. ORGANIZATION OF INTERCLUSTER SHARED MEMORY

A. SHARED MEMORY MODELS

for In developing the concept of intercluster shared memory

for RTC*, three different approaches were studied:

1) no replication of intracluster shared memory,

2) total replication of intracluster shared memory, and

3) partial replication of intracluster shared memory.

The logical structures of these approaches are shown in

Figure 2.1.

1. No Replication

This model views the intercluster shared memory as

the sum of individual intracluster shared memories of all

clusters available in the system. This is very similar to

the approach chosen for Cm*.

Every shared data item is kept only once in

intercluster shared memory, normally in the intracluster

shared memory of the home cluster of the producing process.

Consuming processes have to go through the vari is bus

hierarchies of the system in order to access the respective

item at the time when consumption is to start. Apparently

this is a very time consuming effort if the respective data

item is not resident close to the consuming process. Close

in this context refers to being located in shared memory of

the consuming process' home cluster. In terms of time

efficiency for this model, the only reasonable solution for

:- this situation is to put producing and consuming processes

as close together as possible in order to increase the rate

@of cluster local hits.

The space-time dilemma becomes obvious. In terms of

space, this approach is the most efficient one, because
,ev there exist no duplications of any data item in the whole

18

0,

~ * .Ethernet

cluster 1 cluster 2 cluster 3

M 1 M 2 M 3

a) no replication

b) total replication

c) partial replication

Figure 2.1 Intercluster Shared Memory Models.

19

system. The intercluster shared memory space is equal to the

sum of all intracluster shared memory spaces in the system.

However, if we accept the fact that memory becomes

cheaper and cheaper every year due to development of

technologies that put more and more memory space on a chip,

then we could afford to replicate data in different memories

of the system in order to increase the number of cluster

local hits, or even to ensure that only local hits happen in

the system. This leads to the second model of intercluster

. shared memory.

2. Total Replication

The opposite extreme of no replication is total

replication of all shared memory, i.e. every intracluster

shared memory keeps all shared data items and so

intercluster shared memory consists of as many copies of

intracluster shared memory as there are clusters in the

system. Due to the necessity that all intercluster shared

memory has to fit in every intracluster shared memory, the

available space for intercluster shared memory is equal to

the space of the smallest intracluster shared memory of any

cluster in the system. Therefore it must be ensured that the

smallest intracluster shared memory is large enough to keep

all shared data items needed in the system.

This model makes sure that only cluster local hits

* occur in the system, and that every consuming process finds

every data item in shared memory of its home cluster. This

seems to be a very time efficient approach that suits the

demand of having data as close as possible to the producer

and the consumer as well.

" A major problem with this approach however is the

*t increased overhead in maintaining and updating of shared

data items that are never used at a certain cluster. This

overhead especially consists of traffic on the systems buses

and processing time of the hosts at the interfaces between

clusters and transmission medium. This traffic overhead

20

+,, -. +.,,,++. +, +. .. ._..+.. . _.+. .,+.+ o + ,... .+ .+. + , +. ,,, ,+++ ++ + + oV

slows down the data distribution so that it takes longer for

data to be available at the consuming process' cluster for a

local hit there.

The compromise is a combination of these first two

models, where only necessary replication of data is done.

3. Partial Replication

In this model every cluster maintains shared data

only if those data are used at a specific cluster, i.e.the

producing and the consuming clusters only keep a copy of

respective data items, no superfluous information is

maintained and there is no superfluous traffic on the

transmission medium and the system buses. The intercluster

shared memory in this approach is equal to the union of all

individual intracluster shared memories in the system and

only the intersections are replicated. There can be

different intersections between different cluster groups in

the system. This approach is the most efficient one in

terms of space and time. The traffic on the transmission

medium and the system buses, and the amount of processing

time needed for data exchange is kept to a minimum. Also, as

in the total replication approach, only cluster local hits

will occur.

The overall policy is to transmit shared data to

all consuming clusters as soon as possible after production,

and to transmit those data to consuming clusters only.

This approach seems to be the most adequate one for

a distributed real time system, as it reflects the optimal

compromise in terms of speed ,space, and update overhead.

Intercluster shared memory by partial replication of

intracluster shared memories was therefore chosen for

' implementation in RTC.

'p.

.,

" v v " "-" "*" . "-. -. -"". ."." ."". " "".-. ""'. . ".., ."- . ""."-"."/

III. ORGANIZATION OF INTRACLUSTER SHARED MEMORY

A. CLASSES OF SHARED DATA

Looking closer at shared data, we realize that there are

different classes of shared data used in the system. Some

data is shared among processes on the same board only, some

is shared among processes on different boards in the same

cluster, and some is shared among processes in different

clusters.

It was decided to keep all shared data on special memory

boards, even though some of the data is produced and

consumed on the same board. To protect system's data used by

the operating system, these data items are stored in Common

Memory, which is beyond the reach of user data memory,

called Shared Memory.

All MCORTEX global data are maintained in Common Memory.

Every cluster has one Common Memory where all MCORTEX global

data needed in the respective cluster is kept. Brewer

describes the logical organization of Common Memories. Due

to the fact that eventcounts are used for intracluster and

intercluster process synchronization, some of these

eventcounts are replicated in more than one cluster.

It must be recognized that there exist system's

eventcounts in every cluster, e.g. ERB READ and ERB WRITE.

These are used strictly cluster internally and do not belong

to the intersection of intercluster Common Memory. These

system eventcount have the same name in every cluster, but

their respective values are never distributed over the

system. Only user eventcounts that are used in more than one

cluster are distributed and therefore replicated in

respective clusters.

I

22

..................

B. SYSTEM SHARED DATA

A similar situation exists in Shared Memory. There are

three data items in Shared Memory which are used exclusively

within the cluster:

1) the EthernetRequestBlock,

2) the Transmit Data Block, and

3) the ReceiveDataBlock.

These are data items shared between the driver residing

on SBC 1 and either MCORTEX kernels on other boards or the

ECCB. These system's data items are needed to establish

cluster external communication. Information needed by the

driver about outgoing and incoming messages has to be

communicated via Shared Memory, because it is not possible

to access local memory of any SBC from outside the board.

As is true for system eventcounts in Common Memorv,

these three system shared data items are also used strictly

cluster internally and do not belong to the intersection of

intercluster Shared Memory, even though they have the same

names in every cluster. Only user shared data, that are

shared in more than one cluster are distributed and

therefore replicated at respective clusters.

As described by Brewer, the Ethernet Request Block, the

Transmit Data Block, and the Receive Data Block reside in

this order in the lower part of Shared Memory at addresses

10000H, 10078H, and 10666H respectively. The User Shared

Data Block starts at address 1OC58H and goes up to 17FFFH as

the highest address in Shared Memory in the present

-" implementation of RTC*.

C. USER SHARED DATA

Shared data items are basically interfaces between

different processes. Processes communicate via these shared

data. It is therefore important to agree on the name, size,

and structure of shared data used by different programmers

for different process modules. This agreement must be

23

.r %

accepted by all programmers of any system module and can be

thought of as reached under the guidance of a lead

programmer.

An individual programmer can still use any- other private

name and structure for some variable, as long as he or she

ensures that communication with any other module is done

*] using the agreed upon name and structure.

1. Organization of Shared Data

Shared data items are organized as circular queues

of structures, where the actual item is a structure and the

queue serves as buffer between producers and consumers. This

is true for user shared data and system shared data as well.

While system shared data items have fixed predefined

structures and queue lengths, a user shared data item can be

of any structure, and a user shared data queue can be of any

length. The only restriction is that all user shared data

queues needed at some cluster must fit together into the

User Shared Data Block in Shared Memory of that cluster.

The length of specific data queues is another
important issue to be agreed upon by all programmers using

respective shared data items. The chosen queue length
depends on the expected average input and output rate of a

specific data item queue. The goal is to reduce or, if

* •possible, to avoid idle waiting times at producing processes

due to a filled up queue caused by slow consumption.

As mentioned in Chapter II, the data communicating

version of RTC* developed in this thesis will use the

concept of partial replication of Shared Memory. Therefore

we think of intercluster Shared Memory as the union of all

intracluster shared memory blocks that contain user shared

data. Data communication is only possible among clusters

that actually share data (i.e. there exist an intersection

[- of intracluster Shared Memories of those clusters and the
" . respective shared data item is in the intersection). To put

47. it another way, an intersection of intracluster Shared

24

Memories is only needed if processes in respective clusters

need to communicate. If intracluster Shared Memories only

keep those shared data items needed (produced or consumed)

by iome process in the cluster, then automatically the

minimum intersection and therefore the least duplicated use

of memory space and the most efficient use of time for

maintaining the data is guaranteed.

2. Storage of User Shared Data

In order to further accomplish efficient use of

memory space, the system is set up in such a way, that user

shared data queues can be stored at any address in the User

Shared Data Block in Shared Memory. There must, however, be

enough space available between the starting address of the

queue and the highest possible physical memory address

(i.e.17FFFH in the present implementation).

This flexibility also allows for contiguous storage

of all user shared data and thus the available storage space

is most efficiently used.

The same data item can reside under different

addresses in different clusters. The application programmers

do not have to worry about the addresses, they refer to a

specific data item by its name. The lead programmer will

take care of assigning addresses to shared data queues. When

and how this is done will be discussed in Chapter IV. For

now it should suffice to realize that the organization and

storage of user shared data in this implementation is done

with the least duplication of data items, where each shared

data is available in the local cluster.

D. RELATION BETWEEN SHARED DATA

An important relation exists between system shared data,

eventcounts and user shared data, which is exploited by the

driver for its data communication task.

The system internal management of a data queue is

controlled using an eventcount <dataname> IN and an

eventcount <dataname> OUT. These eventcounts have to be

25

distributed over the same clusters as the related data item,

in order to ensure that a consumer does not read a data item

before it is in the queue, and a producer does not write a

new item into an already used slot before the- old item has

been consumed by all its consumers. The eventcount

V "<dataname> IN tells all consumers that an item is available,

the eventcount <dataname>_OUT tells the producer that a

. former used slot is available for new data.

1. The Ethernet Request Block

Refer to Figure 3.1 for the following discussion.

The system shared data queue, the Ethernet Request Block

(ERB) is filled with Ethernet Request Packets (ERP)

initiated by any process resident at the cluster when it

calls for an update of the value of an eventcount that is

0 also needed at some other cluster.

The many producers of Ethernet Request Packets are

kept in sequence by the systems sequencer ERB WRITE REQUEST,

which basically is a ticket machine that makes sure that

only one packet at a time is put into the Ethernet Request

Block, and that Ethernet Request Packets are put in on a

first come first serve basis. The only consumer of Ethernet
Request Packets is the driver on SBC 1.

An Ethernet Request Packet keeps the following

information in its eight byte structure:

command (i.e. 00H means eventcount)

type name (i.e. 8 bit eventcount id)

namevalue (i.e. 16 bit eventcount value)

remoteaddr (i.e. 16 bit addr of external cluster)

System eventcounts ERB WRITE and ERB READ play the
0"T functional roles of <dataname> IN and <dataname>_OUT

"-'-/ respectively for this system shared data queue.

We realize that ERPs in the ERB are in partial

order. The order of packets for different eventcounts
,. <dataname> IN or <dataname> OUT is of minor importance. More

26

...;*:

.- * * l

10078

Transmit Data Block
10666

Receive Data Block
1OC58

User Shared Data

17FFI Block

17FFF _ _ _ _ _ _ _ _ _ _

Shared Memory

19 0

'W.

Ethernet Request Block

L .J. L[JIL._ command

Ethernet Request Packet type_name
namevalue

remote-address

Figure 3.1 The Ethernet Request Block.

27

important to notice is that the logic of eventcounts, if

used correctly, ensures

a) that a packet with an eventcount <dataname> OUT always

comes after a packet with the respective eventcount

<dataname>_IN, and

b) that all packets with eventcounts <dataname> IN for a

specific data queue are in total order, which is also true

for all packets with eventcounts <dataname>_OUT for a

specific data queue.

2. User Shared Data Block

As mentioned above, user shared data queues can be

of any length and the data items can be of any structure,

but every data item has a specific structure that is

replicated in every slot of its data queue.

Due to the information contained in the eventcount

value, a specific slot in a data queue has to be written

before the eventcount is advanced and also the eventcount

has to have been advanced before the next slot is written

to. The application programmer has to be aware of this

logical sequence when using eventcounts. The system then

ensures that always the next higher slot in the queue is

written to, and this only if this slot is available for

overwrite.

This scheme also ensures that the data items in a
respective queue are totally ordered. Furthermore, it is

ensured that respective Ethernet Request Packets that keep

value information of an eventcount related to this data item

are in the same order as the data item iterations in the

data queue. This is also true if an eventcount relates to

multiple data.

These facts about the relation between eventcounts,

Ethernet Request Packets, and user shared data is the basis

for the logic of the implementation of the drivers data

transmission and data reception tasks.

28

1,V

10000

10078 Ethernet Request Bi.

Transmit Data Block
1066

- Receive Data Block

17FFF

* Shared Memory

Shared Data Queue

Data item

Shared Data Queue

Data item

Shared Data Queue

Data item

Figure 3.2 User Shared Data Queues.

29

- ~ *~*-t *.- ,k-*.,0 2

E. INTRACLUSTER DATA FLOW

As mentioned earlier, we assume to have the classical

producer-consumer situation for all user shared data in the

system. Data items are kept in circular data queues that

serve as buffers between producers and consumers. Due to

this assumption, all user shared data are related to some

eventcount, which replaces the semaphore used in the

classical example. Refer to Figure 3.3 for the following

discussion.

A user process resides in the user area of local RAM on

some SBC. The process becomes active when the scheduler

chooses it as the next process to run after it was ready.

Before a producer process can place the produced data item

into the queue, a slot must be available. Slot availability

can be checked by comparing the <dataname> IN and the

<dataname>_OUT eventcount values of the respective data

queue.

A consumer process becomes ready only when the value of

the respective <dataname> IN eventcount has reached the

awaited threshold, indicating that there is a new iteration

of the data item available in the data queue.

A process which consumes data and produces new data as

well obeys the same rules. It is of utmost importance that

the application programmers use eventcounts and the AWAIT

and ADVANCE primitives correctly.

A producer process when running produces shared data

items, puts these items into user shared memory, if there is

space in the queue, and then calls the system primitive

ADVANCE (EVC). This system process then increments the value

of the respective eventcount and checks if this eventcount

is distributed and therefore a cluster external copy needs

to be updated. If so, it calls another system primitive,

SYSTEM$IO, whic' in turn gets a ticket from the

30

[I

...

00000 C/-6O
04390 C/-6O

-produce shared data

-call ADVANCE (EVO) 0B200 Lode
0B700 Lae

00800

OFFFF DDT 86

Local RAM

-~ ' 'EOOOO

CP/M

Multi User

ADVANCE (EVC) E30Are a

-advance eventcount MCORTEX

-if eventcount isGlbl at

distributed

*then Common Memory

SY STEM $T O 10000_Et ernet _R e uest___

-produce ERP Ethrne Reues Bi

Transmit Data Block

Receive Data Block

User Shared Data

Block

17FFFII _ _ __ _ _ __ _ _

Shared Memory

Figure 3.3 Intracluster Data Flow.

31

ERB WRITEREQUEST sequencer and puts an Ethernet Request

Packet into the Ethernet Request Block when its ticket

number becomes the lowest in the waiting line.

If no remote copy is needed, then no Ethernet Request

Packet is produced, because all consumers reside in the same

cluster as the producer, and the cluster internal

synchronization can take place, as all needed data (i.e.

eventcount value and shared data, if any) is present at the

cluster. A waiting consumer process becomes ready and when

activated consumes the shared data item from Shared Memory.

32

0,#

IV. INTERCLUSTER DATA SHARING IN RTC*

A. INTERCLUSTER CONNECTION

1. The Ethernet

As mentioned in the system overview in Chapter I,

all clusters in RTC* are connected via an Ethernet Local

Area Network. A detailed specification of the Ethernet is
given by Xerox Corporation [Ref. 9]. The Ethernet provides

the lowest two levels in the International Standards

Organization's Open System Interconnection (ISO OSI)

reference model, i.e. the Physical Layer and the Data Link

Layer. Higher levels are collectively seen by the Ethernet

as the Client Layer. The RTC*'s driver provides the

*J system's Client Layer and the home board of the driver, SBC

I, serves as a host in the Ethernet's communication subnet.

The physical connection of a cluster to the Ethernet's

coaxial cable is provided via the ECCB N13010, the interface

between the MULTIBUS and the transceiver which actually is

the tap clamped on the coaxial cable.

While the interface board provides the hardware

connection between the highest level system bus (Ethernet)

and the cluster bus (MULTIBUS), the ECCB software and the

driver are responsible for correct exchange of messages

transmitted or received by any cluster in RTC*.

As is true for all SBCs, also communication with the

ECCB N13010 has to be done via board external buffers. In

contrast to inter-SBC communication, which is synchronized

by eventcounts, intercommunication between SBC 1, the

driver's home board, and the ECCB is synchronized using

interrupts (e.g. Transmit DMA Done or Receive DMA Done).

An in depth description of the hardware N13010 is

given by InterLAN Corporation [Ref. 10]. The software

driver was developed by David Brewer. Brewer's thesis

provided the basic scheme for intercluster exchange of

4. 33

eventcount values. The contribution of this thesis is to
enhance the basic scheme for a general data exchange in the

system by modifying the driver software and exploiting the

logical interrelation between eventcounts and shared data.

2. The Ethernet Packet

Figure 4.1 shows the frame format of an Ethernet

packet. This is a given structure produced by the ECCB.

Information to be put into four of the six fields have to be

provided by the client. Preamble and Frame Check Sequence

are added by the ECCB for receiver synchronization and error

checking respectively.

For a destination address, any six byte combination

except all zeroes can be used, which is also true for the
source address. The arrows on the right hand side and the

O* bottom of Figure 4.1 indicate the serial transmission

sequence of the bytes and bits. The very first bit

transmitted in the destination field indicates whether the

destination address is a multicast or a physical address. If

this bit is 1, making the first byte of the destination an

odd number, then this address is a multicast address (group

address of any number of clusters). A special multicast

address, all ones, is reserved as the so-called broadcast

address, which addresses all participants in the network.

If the first bit is 0 then the destination is a

physical address. Physical addresses are fixed addresses of
" ECCBs. Xerox Corporation takes care that physical addresses

are unique, i.e. every physical address is used only once in

any ECCB worldwide.

Due to the just described restrictions, there are

actually 2**47 different combinations available to be chosen

as non-physical, non-broadcast destination addresses. For

the present implementation of RTC* it was decided that two

bytes are more than adequate, because the maximum number of

.- stations for an Ethernet Local Area Network is restricted to

1024 by the Ethernet specification. Therefore the first

4' 34

- :~~ -- - .~*~.--~.-< - - ~--A

.1'

Preamble 8 Bytes

','.' ,.Multicast / .
Physicat dr Destination 6 Bytes! Physical Addr

Source 6 Bytes

Type 2 Bytes

46 to 1500

Data Bytes

Frame Check Sequ. 4 Bytes

Isb msb

Figure 4.1 The Ethernet Packet.

35

- . p

four bytes of the destination are kept fixed 03H, OOH, OOH,

OOH providing the multicast indication by an odd first byte.

For the the source address, the ECCB allows two

possible ways. Either this address is not provided by the

client, in this case the ECCB automatically inserts its

physical address, or the client fills in a source address.

This second way speeds up the transmission process and was

therefore chosen for RTC*. The first four bytes are kept

fixed 03H, OOH, OOH, OOH as in the destination field. Byte

five and six contain the cluster's address. This is not the

ECCB's physical address as mentioned by David Brewer, but

rather a software address of the transmitting cluster.

The two bytes of the type field are reserved for

use by higher levels. Clients can use this field in order to

exchange information about a specific format used in the

data field. The present implementation of RTC* will not use

the type field and therefore sets it to 00H, OOH.

The data field provides space for up to 1500 bytes.

It is required that the minimum length of the data field be

46 bytes in order to generate the minimum total length of a

sufficiently long message. This minimum message size

requirement guarantees that in any Ethernet collisions are

detected by the sending stations, even if source and

destination stations are maximum distance (2.5 km) apart,

and the net performs at worst case propagation speed

tolerated by the Ethernet specification. Collision detection

by the sending station is important for correct backoff and

retry in order not to loose messages in the network. The

ECCB takes care of this minimum length requirement as will

be seen later. Also the sending ECCB attaches a four byte

I frame check sequence at the end of every Ethernet packet in

order to provide a basis for error checking to the receiving

ECCB.

36

SI.. -. .. . -. . -

B. DRIVER - ECCB MESSAGE HANDOVER

By a chosen wiring option, it is not possible to access

(write or read) onboard memory of an SBC or the ECCB from

outside the board. Therefore a buffer for message handover

is needed for outgoing messages as well as for incoming

ones. These buffers are set up in Shared Memory as systems

shared data Transmit Data Block and Receive Data Block. In

contrast to other shared data (e.g. Ethernet Request Block

or user shared data), the Transmit Data Block and the

Receive Data Block are single slot queues that meet the

structure requirements given by the ECCB specification

described in the Ethernet Communication Controller User

Manual.

1. Transmit Data Block

The Transmit Data block is a structure of 1514 bytes

that contains all information required to be submitted by

the client in order to enable the ECCB to build the Ethernet

packet described above. Figure 4.2 shows this structure. The

destination and source fields are filled with the preset

address parts as well as the dynamically changing two high

bytes of the destination. The type field keeps the values

OOH, OOH, and the actual message content is kept in the

lower part of the 1500 bytes data field.

2. Receive Data Block

The Receive Data Block, see Figure 4.2, is similar

to the Transmit Data Block and carries all information
contained in an incoming message, i.e. destination, source,

type and data field. In addition, the receiving ECCB hands
over status information related to the message, that can be

used by the client in order to determine the length and the

error status of the received packet. These additional items

of information are kept in the first four bytes (1 byte

frame status, 1 null byte, 2 bytes frame length) and the

last four bytes (frame check sequence) of the Receive Data

Block, making the Receive Data Block 1522 bytes long.

37

' W

Frame Status

0

Frame Length <7:0>

Frame Length <15:8>

Destination (A) Destination (A)

(B) (B)

(C) (C)

(D) (D)

(E) (E)

(F) (F)

Source (A) Source (A)

(B) (B)

(C) (C)

(D) (D)

(E) (E)

(F) (F)

Type Field (A) Type Field (A)

(B) (B)

Data (first byte) Data (first byte)

Data (last byte) Data (last byte)

CRC <24:31>

CRC <16:23>

CRC <08:15>

CRC <00:07 >

Figure 4.2 Transmit Data Block and Receive Data Block.

38

• *,-- .- . - .-.' ,'-.-. '-i...-.'' .-. - ..- - • -. '- .,-. - . . , - - -. ." ." . --. ,.. . . ' -", .' , , .

The present implementation of RTC* ignores the

frame check sequence and concerns itself only with the data

field.

Even though the length of the data field in the

Ethernet packet is determined by the length of the actual

message, both, the Transmit Data Block and the Receive Data

Block provide space for maximum length messages in order to

be prepared for any legal message size.

C. MESSAGE TRANSMISSION AND RECEPTION

The main task of the driver on SBC 1 is to build a

message that is to be transmitted over the Ethernet, and to

process a message that was received. For transmission, the

message has to be built in the Transmit Data Block in Shared

Memory first, and then the ECCB is to be triggered for

transmission. For reception, after the ECCB signaled that

it has put a message into the Receive Data Block in Shared

Memory, the correct data queues in Shared Memory have to be

found and the data items have to be put into the correct

slots in their respective data queues.

In order to be able to do this correctly, every driver

maintains a table in its local RAM which contains all the

information needed about the relationship between

eventcounts and shared data items.

1. The Relation Table

We assume that every user shared data item used in

the system is related to some eventcount. The driver

exploits <dataname> IN eventcount, because this is the

trigger for shared data transmission when put into an

Ethernet Request Packet by the SYSTEMSIO process.

Only if a <dataname>_IN eventcount was advanced, was

there a new data item put into the respective data queue. An

eventcount can also serve as a <dataname> IN indicator for

multiple data items that are updated at the same time. The

important property is that for every shared data item there

exist one <dataname>_IN eventcount, which is advanced after

39

.

the data item is available in its corresponding data queue

in Shared Memory. Only if an eventcount is distributed over

the system, and therefore a cluster external copy is needed,

is there an Ethernet Request Packet produced-and put into

the Ethernet Request Block. Every data item is distributed

over the same clusters as the eventcount to which it is

related. A <dataname>_OUT eventcount only informs everybody

in the system that a slot in the respective data queues

becomes available for overwriting (an important item of

information for producer processes), and so these

eventcounts, if distributed, will be transmitted alone, with

no user shared data in the same Ethernet message.

This logical interrelation between eventcounts and

user shared data is kept in the relation table shown in

Figure 4.3, which is a structure of 100 entries (the present

implementation of RTC* allows for 100 eventcounts per

cluster), which holds the eventcount id and the number of

related data items on level two, and information about up to

10 data items for every eventcount on level three. Besides

the knowledge about how many data items belong to some

eventcount, the driver needs to know, where to find a data

item, what is the items structure size, what is the data

queue length, what is the next slot to be sent, and what is

the next slot into which to put a received item.

The relation table is built by the driver during

system initialization by the procedure maketable, see

Appendix A. This procedure reads the file relation.dat,

which has to be present on the disk that keeps the cluster's

software.

The driver (see Appendix D) is a general system

process that is identical at every cluster. The relation

table is cluster specific and keeps cluster specific

information only. The relation.dat file has to be set up by

the lead programmer, who decides what application program is

40

*1°

rel_tab(lOO)

evc-id
,data items related

rel_tab(l 2

evcid

data items related

queue length

Figure 4.3 The Relation Table.

to be run at what cluster, and therefore knows what

eventcounts and user shared data are needed at a cluster.

The relation.dat file basically is a table

consisting of five columns as shown in Table I. It keeps

eventcount identification, number of data related to this
eventcount, and for every data item the address of the first
byte in its data queue, the length of the data queue (# of
slots), and the length of the data item structure(# of

bytes). The last line in the relation.dat file serves as a

sentinel consisting of zeroes in all five columns. The

* procedure make-table expects the formatted indata to be in

I'-g

columns 5, 15,25,ure 4. repe Rtely. Thisinfomation i

."to e un t hatclute an tereoreknws4ha

TABLE I

FILE RELATION.DAT

evcid numdat point qlen bytes

col col col col col
5 15 25 35 45

01 1 8c5 50 6
02 3 8d84 10 3

8da2 20 5
8e06 2 10

05 2 8ela 30 5
8ebO 50 9

07 1 9072 15 5
04 1 90bd 20 8
00 0 0000 00 00

0 read into the relation table entries evcid, numdat,

pointer, qlen, and bytes respectively. Nextin and nextout

are initially 0 and therefore do not have to be read in.

The information kept in the relation table suffices

for the driver to do its job. The driver does not need to

know anything about the logical structures or names of data

items. It treats a data item as a sequence of bytes, and is

only interested in finding the correct sequence of bytes for

transmission, or the correct place in Shared Memory to put

the bytes after reception. Procedures makemessage and

process packet take care of this.

2. Data Format

A decision that had to be made was in what manner

the data field of an Ethernet Packet should be used in order

to exchange data in RTC*. The question was discussed whether

to use different fixed formats for different situations and
using the type field for identification of the format used

in the data field. After recognizing the logical
interrelationship between eventcount and shared data, that

carries the possibility of uniquely identifying a group of

shared data by its common eventcount, it was decided to keep

42

U

the data format as flexible as possible.

The first four bytes of the data field will always

keep the eventcount information followed by as many data

items as are related to this eventcount. The maximum length

of these data items together is restricted to 1496 bytes in

order to respect the 1500 byte limit of the data field when

the 4 byte eventcount information is included. This seems

to be more than adequate for the purpose of RTC*, and still

leaves the possibility to transmit all data items as long as
a single item is not longer than 1496 bytes, by logically

grouping data items under eventcounts respecting this

restriction.

The eventcount is the identifying part, therefore

only one eventcount is transmitted in any Ethernet packet.

3. Message Transmission
0Message transmission is triggered by an Ethernet Request

Packet (ERP) available in the Ethernet Request Block (ERB);

more precisely, by an advanced eventcount ERBWRITE

indicating that there is an ERP in the ERB which has not

. been processed yet. The driver with its preference for

outbound messages will start a transmit job as soon as

possible. In the initialization part, the driver already has

preset the first four bytes of the destination field and all
six bytes of the source field. Refer to Figure 4.4 for the
following discussion.

Bytes five and six of the ERP are copied into the

two high bytes of the destination field of the Transmit Data

Block, making the first 14 bytes of the Transmit Data Block

complete.

Next a four byte overlay is put over the ERP, using

a based variable (Ref. i1], after which the procedure

makemessage (see Appendix B) is called.

This procedure first checks if the ERP contains an

eventcount (in the present implementation only eventcount

related ERPs are processed). If byte one of the ERP

43

*V

1? * W ° .. .-

evcido

data items related '00' =evc

Reelo Tlet

L __4 2 11 0

Dat vect _a-vc

* Transmit Data Block

unused Type bytes

preset Source bytes

preset Destination

6..Figure 4.4 Message Transmission.

44

contains OOH, indicating EVCTYPE then the first four bytes

of the ERP are copied over into the first four bytes of the

data field of the Transmit Data Block.

Next a relation table look up is done under the

respective eventcount id and the number of related data

items is found. If the eventcount id is not in the table,

then there are no related data and the message is done,

otherwise the first related data item is found, an overlay

(1500 bytes in the present implementation) is aligned with

the data queue, using the address information (pointer) of

the data item. Now the slot number (next_out) and item

size(bytes) are combined to an offset in order to find the

first byte to be copied over into the Transmit Data Block to

follow the eventcount information in the data field. The

data item size (bytes) contains the number of bytes to be

copied over.

The next out of this data item in the relation table

is updated to the next slot number, and the loop starts

again for the next data item related to this eventcount.

Meanwhile also the total bytecount for bytes put into the

data field of the Transmit Data Block is carried on. After

all the related data has been copied over into the Transmit

Data Block, this bytecount information is added to 14 (6

bytes destination, 6 bytes source, 2 bytes type) and the

resulting bytecount is used as a parameter in the procedure

transmit packet, which signals the ECCB that a message is

ready to go and should be sent.

Just before calling procedure transmit_packet, the

driver calls ADVANCE (ERBREAD), which makes the just

processed ERP slot available for reuse.

The ECCB copies the number of bytes signaled

(minimum 60) into its transmit queue and puts the message

out over the Ethernet. If necessary due to collisions, the

transmission is repeated and only after the message was

successfully sent does the transmitter become ready for the

45

b .~.. '.I

"- ~~~W nex trnsisiV

next transmission, which is prepared by the driver in the

above described fashion.

4. Message Reception

Message reception is triggered by an ECCB interr pt

signaling that there is a received message available in the

ECCB's receive queue. Refer to Figure 4.5. The driver then

initializes a DMA and the ECCB puts the message into the

Receive Data Block in Shared Memory. After the message is in

the Receive Data Block, the procedure processpacket (see

Appendix C), is called. This procedure works similarly to

the procedure makemessage.

Instead of getting the needed information from an

ERP, procedure processpacket has to look up the first bytes

in the data field of the received message. This

implementation of RTC* neither uses the frame status and

- frame length information, nor the frame check sequence.

First the procedure processpacket looks up byte one

of the data field in order to check if the just received

message contains eventcount information. If so, it finds out

if the value of the just received eventcount is higher than

the local value of the respective eventcount, because the

message is of interest for this cluster only if the remote

eventcount value is more advanced than the local one.

If the remote value is higher, a relation table look

up is made under the eventcount id found in byte two of the

data field.

If there is no entry in the relation table for this

*eventcount, then no related data exists and the only thing

to do is to update the local eventcount value.

If an entry exists, then the address (pointer) of

- .' the first related data item is found, an overlay is aligned

with the respective data queue, and the slot number

(nextin) and the item size (bytes) are combined to an

offset in order to find the first byte in the data queue

that is to he changed. Then the number of bytes found in the

46

,-,an.

#data1 items Dataa(2)

2 H 0 IiF(Laii
pointtoen

queue value

Type anioreadnetnto

V..~e a t o F i g re 4 5 M s a e R c p i n

Data~l)Data47

2 4 2 1

Da'vctDa.vc

evncon

.J.--V~~~.......

'H 47

item size information is copied over into the data queue,

starting with byte five of the Receive Data Block's data

field (i.e. the first byte of the first related data item

received).

During this operation also the bytecount is updated

in order to find the starting byte for the next related data

item.

Similar to the procedure make_message, the procedure

processpacket updates the nextin information to the next

slot number in order to be ready for the next incoming

message bringing an update for this data item if any.

After the first shared data item is copied into its

correct slot in Shared Memory, the next related item is

copied into its respective queue. After all received related

data items of the received eventcount are updated, the

eventcount is advanced to its new value, signaling the

shared data status to respective consumers at this cluster.

The procedure processpacket takes care of advancing the

eventcount only after all related shared data items are

updated, guaranteeing the consistency of eventcount values

and data items.

D. DATA SHARING

It is obvious that data sharing using buffers in Shared

Memory can only be achieved when producers and consumers

agree upon, where to put and to find the respective data

items. Also, this only works, if producer and consumer deal

with the same item structure.

In a system like RTC*, where probably many applications

- .. programmers write different system modules, these

programmers have to agree upon the shared data names and the

Vr, structures and queue lengths (at least for intracluster

sharing).

Even though it would suffice to only declare those

shared data items that are actually used in some process,

the policy followed in the demonstration program was to

48

IF.

include a common declaration file in every module in order

to ensure that sharing modules really work with the same

data item. Following this example in a real program makes it

easier to maintain all shared data declarations, probably

done by the lead programmer.

Applications programmers include the shared data file

in their programs and only have to be concerned about the

correct use of those items actually used in their programs.

Table II shows the file share.dcl for the demonstration

program.

TABLE II

FILE SHARE.DCL

DECLARE

(de-ptr,tr-ptr,moptr) pointer,

1 delta(0:19) based(de ptr),
2 dx fixed bin (71,
2 dy fixed bin (7),
2 dz fixed bin (7),

1 trackC0:49) based(trptr),2x fie i 15 ,-
2 y fixed bin C15 ,
2 z fixed bin (15),

1 missile order(0:49) based(mo ptr),
2 launcher fixed bin (7),
2 azimuth float binary,
2 elevation float binary;

This file ensures unique declarations for all user shared

data in the whole system.

Every user shared data item is declared as a queue that

is based on a respective pointer. Using based variables

provides the possibility that in spite of total user shared

data declaration, only for those items that are to be

resident in some cluster's Shared Memory physical memory

space is assigned. This leads to efficient use of memory

49

S

.. . ' * * * * * .'~..

V space. As mentioned before, contiguous storage of data

queues enhances the efficiency even more.

This requires thoughtful assignment of addresses to the

different data queues in the system. As for the relation.dat

. file and share.dcl file, the custodian for the assignment of

pointers also should be the lead programmer. Applications

programmers do not have to worry about this because they
refer to a data item by dataname. Pointer assignments are

kept in the file pointer.ass, which is cluster specific; the

share.dcl file is the same for every cluster in the system.

Table III shows the two pointer.ass files used in the

demonstration program.

TABLE III

FILE POINTER.ASS

I *
-. 'this file keeps the pointer assignments

for shared variables used at cluster 1

unspec Ctr ptr)='8c58'b4;
unspec(mo-ptr) '8d84'b4;

/1*
this file keeps the pointer assignments
for shared variables used at clus er 2

unspec Ctr ptr) '8c58'b4;
unspec (de-pt J 8d84'b4;
unspec mo-pt '8dcd' b4;

In order for processes to be able to really share data

in Shared Memory, it is important that they find shared data

under the same physical address. Under INTEL's policy that

calculates a 20 bit physical address from a segment and an

offset, this implies that user shared data has to be found

A. in the same segment, the pointer or logical address then is

the offset in this segment.

50

.14

In RTC* this is realized in using 800H as a data segment

register value and using sixteen bit pointers for shared

data starting at 8000H. The lowest Shared Memory address

therefore is 800H*1OH+8000H, which is equal to 8000H+8000H,

or 10000H. The lowest byte of the Ethernet Request Block

resides at the above address.

The segment used by a process is defined in procedure

create_proc. It is important that the parameters 4, 7, and

8, i.e. stack segment (SS), data segment (DS), and extra

segment (ES) in the create_proc call are set to 800H when

creating a process. As mentioned by Brewer ,when he

describes user process creation [Ref. 1: p. 49], some

PL/I-86 routines assume identical contents in the SS, DS,

and ES registers.

4

1

51

V. CONCLUSION

The goals of this thesis were achieved. The MCORTEX real

time executive is extended to handle multicluster general

inter-process data communication. An appropriate model for

intercluster shared memory is implemented by partial

replication of intracluster shared memory. Only PL/I-86

modules were modified or newly added.

The message exchange scheme is kept as flexible as

possible, with the only restriction that the four bytes of

eventcount information have to be put into the first four

bytes of the data field of the Transmit Data Block, and all

related data items have to follow in the sequence given by

the relation table. The driver takes care of this.

Maximum data length in a single message is restricted to

1500 bytes in accordance with the Ethernet specification.

This size seems more than adequate for the purpose of RTC*.

If longer messages are needed in the system, a correct data

exchange can be achieved by breaking up the message into

smaller ones relating these to specific eventcounts.

The driver takes care of correct message assembling and

processing, and is -- as a special systems module with a

dedicated board -- completely transparent to the

applications programmer and user. The lead programmer will

have to decide how to distribute different applications

4 modules, and where to store data queues in Shared Memory. He

or she will have to maintain the relation.dat file and the

pointer.ass file, and also the agreed upon user shared data

in the share.dcl file.

I In the current implementation of RTC the distributivity

of the eventcounts (and with these the distributivity of

data items) have to be set at system initialization. This

restricts the dynamic reconfiguration of the system after

initialization. Future implementations should try to resolve

52

L ..'-.'',' ,- , °.. '. - -.. , , . . ", . .,* ,'. .. . , ' . *,, .. ., ,- ,,,. , "'"< '

this restriction. A possible way might be to exploit the

general broadcast situation of an Ethernet environment. As

only one message can be on the Ethernet at a time, and as

all stations on the net have to listen and cannot do

anything else during this time, this situation could be

exploited in the following manner.

Use the eventcount id as a kind of multicast address. As

there is only one eventcount in any one message this is a

unique identification of what information is carried in the

message. Every cluster "knows" what information is needed at

that cluster. If the eventcount ids of related data items

needed at some cluster are put into the group address table

* of that cluster's ECCB, then every Ethernet packet that

carries information of interest for this cluster will be

taken in and processed.
It is not necessary to keep the remote address for an

-"- eventcount in Common Memory. The information that an

eventcount is distributed or not distributed, meaning a

cluster external copy is needed or not needed, suffices.

- - This distributivity information can be initialized for the

initial system constellation. On reconfiguration, it could

then be automatically and dynamically changed without having

to shut down and reinitialize the whole system.

After reconfiguration, only those clusters where actual

4 changes were made broadcast the eventcount ids of interest

to the cluster. Every other cluster updates its

distributivit information for those eventcounts.

There was not enough time for the above described

implementation in this thesis, but future work in this

direction is highly recommended in order to make the total

system more efficient, more robust, more survivable, and

more flexible, requirements that are of utmost i.mportance

especially for military applications.

53

41
.- . -5*3

APPENDIX A

PROCEDURE MAKETABLE

Procedure maketable is the first procedure called by

the driver. It sets up the relation table in local RAM of

SBC 1 by reading the information from the file,

relation.dat.

The relation table is a three level structure that keeps

the eventcountid (evc_id) and the number of data items

(numdat) related to this eventcount on level two and the

data queue address (point), number of slots in dataqueue

(qlen), number of bytes in item structure (bytes), next slot

to be sent (next_out),and next slot to be received (nextin)

on level three.

There are maximum 100 level one entries in the relation
,' table, because the maximum number of eventcounts at any

cluster in the present implementation is 100. For every

eventcount a maximum of 10 related data items are possible.

The driver looks up an eventcountid and finds all

information necessary to either combine data items in the

Transmit Data Block for transmission, or put received data

items in their respective Shared Memory slots.

Procedure make-table expects the indata evcid at column

5, numdat at column 15, point at column 25, qlen at column

35, and bytes at column 45 in the relation.dat file.

Next-out and nextin are initially 0 and do not have to be

read.

54

A %

PROCEDURE MAKETABLE R.Haeger, Dec 1985

**This procedure reads relation values from file 3cc
SRELATION.DAT into the relation table.

b. make_-table: procedure;

declare
relation file,

V.: (J,i) fixed bin (15),
V eof bit(e);

open file (relation) stream input;
1=0;
eo±'='O b4;
do while (eof='Obl);

/* read data from relatioi.dat file *
_jget file (relation) erlit(rel _tab(i).evc _il,

* rel _tab'i).numdat)
(colurn'5),b4(2),column'15),f' 2));

do J=1 to (re]. tab(i).numdat);
/* real data for all related items *

get file (relation) edit
(unspec(rel _tab(i).data,,j).voint),

rel _tab(1) .data(j) .bytes)
(colurnn(25) ,b4(4) ,column(35) ,f'4) ,column(45'') ,fA:);

maxa bytes5=max (maxa bytes,
rel _tab (i) data(.1) .bytes~rel _tah(1) .data (j) .a len);

end;
/* if sentinel Is reached *

if rel _tab(i).evc _il = 'erb4 thpn
- do;

eof='1 'b4;
Dut skiD list('lonzest data aueue at this cl'ister: '.

maxabytes,' bytes')
end;

end;
end make table;

I.2

APPENDIX B

PROCEDURE MAKEMESSAGE

Procedure makemessage is called by the driver when

there is an Ethernet Request Packet in the Ethernet Request

Block that has not been processed yet.

It checks the ERP for eventcount type, and if the ERP

contains eventcount information, it sets up the data field

of the Transmit Data Block. The eventcount information is

always put into the first four bytes of the data field,

followed by all data items related to this eventcount in the

sequence given by the order of these data items in the

relation table.

Procedure makemessage also keeps track of the bytecount

of the total message, an information needed by the ECCB for

transmission.

56

KK:."-1~~,~***

PROCEDURE MAKE 'ESSAGE R. !Haeger, Dec 19;95

SThis Drocedure builds the Transmit Data Block for
Sa message to be transmitted over the Ethernet.

* make-messaee: Droredure;

dec lare
datptr pointer,
dat _vect(1500) bit (8) based (dat-Dtr).
(next _out,r,J) fixed bin (7),
(off,start,last,kr) fixed bin (15);

/* check for evc */
if erp-vect (1)=EVC -TYPE then
do.*

bytecount=4;
Io k=1 to 4;

/* Dut evc info into data field ~
transmit _data _block.data(k)=erp-vect-k);

end;

/* check messae
put skitD listk'::'transmit _data-_block.lata(l),':: -.

transmit data blcck.data(2, :
transmit data block-data(3),':
transmnit _data _block.data(4W:::K);

/* fird res~ective relation table entry *
do while (Irel _tab~r).evc _id =erp vect(2)) &

* (rel _tab(r).evc _id '10 _b4))I
r=r+1;

end;

1* if eve entry *
if rel _tab(r).evc _id '01'b4 th",en
do;

/v for every related itern~
do i=1 to rel _*tahI\r).numdat;
start=tytecount + 1;/~fn hret~pt~
last=rel tab'r).data(j).bytes; /'hwln ti .

bytecount=bytecourt + last; /* keeD track 4/
dat ptr=rel _tab(r).data(j).ooiL-t; /*aliLRn datvect"/
next _out=rpl _tab(r).data(.1).next out;
/* comvutu, offset of item in data Queue ;;V

* off=(rel _tabfr).Iata,'j).bytes i ext-_out) + 1;

57

ArL

/* com pute next slot number to go */
rel _tab (r).data(,I).next _out=mod(next out + 1.

rel tab(r).data(j).alen);dokOto (ias t-1)

/* put item's bytes into data field '/
transmit _atablock.data(k-start)=datvect(k+off);

.end;

end;
end;

/* compute total bytecount for message ,/
bytecount=bytecount + 14;

end;
else do; /* if not evc */
end;

end make-message;

00

J..

*..'

4-

APPENDIX C

PROCEDURE PROCESSPACKET

Procedure process_packet is called by the driver when

there is a newly received message in the Receive Data Block.

It checks the received data for eventcount type, and if

the message contains eventcount information, it checks if

the received remote eventcount value is higher than the

local value of the respective eventcount. Only if the remote

value is higher than the local value, it processes the

received message. Using the eventcountid in byte two of the

data field, a relation table look up is done and all

received data items are put into their correct slots in

Shared Memory.

After all data items are placed correctly, the local

copy of the respective eventcount is updated by calling

ADVANCE(EVC).

.
5

. 5 9

*1

I * *4 * * "'F*lSl'' *'. 4'4*4

C PROCEDURE PROCESS PACKET R.Hae~er, Dec 1995

* This Drocedure processes received messazes.
x, It takes the data from the Receive Data Block and
*e: put every item in its correct slot in Shared Memory. =
• It also calls for an update of the evencourt value. **

processpacket: procedure;

D VCLAR?

evcid bit -'B),

local evc value bit (16).
(datDtr,D) pointer,
remote _evcvalue bit (16) based (p),
dat vect(15e7) bit (8) based (dat _Otr),
(off,start,lastk) fixed bin (15),
.(next _in,r,j) fixed bin (7);

_ut skid list('receivin',);
* ./* check for evc -/

if receivedatablock.data(1)=evc_type then
o;

addr(receive data block.data,3));
evcid=receive data block.data(2);
local evc value = read(evcid);
if lojal evr- value < remote evc value then
do;

r=1;

/: find evc entry in relation table */
do while ((rel tab(r).evc id = evcid) &

(rel-tab(r).evc_-id "= " b4));
r=r+l;

end;
if rel tab(r).evcid = 3'b4 then

byteccunt=4; /* jump over evc info *1

do 1=1 to rel _tab(r).numdat;
start=bytecount+i; /* compute start of item */
last=rel tab(r).data(J).bytes; /* and lenztt /
bytecount=bytecount+last; /4 and item's end I/
next in=rel tab(r).data(j).rext in;
.* / omnute-offset in data aueue /

off=(last*next in) + 1;
/* compute rext slot number to fill #/

rel_ tab(r).data(.1).next _in=mod(next_ ir1,
r el tab(r) .data (j).a len);

4691

i' , •

datptr=rel tab(r).data(j).point; /* align datvect*/

do k=O to (last-i);

/* put item bytes into data aueue ~
dat -vect(k+off)=r-eceive-data _blo.-k.'iata(k+start);

end;
end;

end;

* 1* update local evc value *
do while (local evc _value < remote evc _value);

call advance (evcid);
local evc _value = add2bitl6(local-evc value.'SO0i'b4:)

end;
end;

else do; /* if not evc ~

call disablecpu_ irterrunts;

eni;

end process packet;

61

APPENDIX D

THE DRIVER

The driver is the software link between a cluster and

the ECCB that hooks up a cluster onto the Ethernet. It

manages all cluster external message exchange (transmission

and reception), and sets up the clusters communication

ability in the first place.

The driver resides in the user area of SBC 1, which is

dedicated to serve as the cluster's host. The executable

file names are CIPROC.CMD and C2PROC.CMD for the two cluster

constellation of RTC* in the AEGIS lab at the US Naval

Postgraduate School.

0 The LINK86 Input option is used to link files sysinitl,

sysdev, asmrout, and gatemod into ClPROC. Sysinit2, sysdev,

asmrout, and gatemod are linked into C2PROC.

Cluster specific information about the creation and

distribution of eventcounts is contributed by sysinitl and

sysinit2 respectively, which are the main procedures for the

linkage. Additional cluster specific information is read

from the address.dat file and the relation.dat file during

execution at runtime. The %included files sysdef.pli and

N13010.dcl provide system-wide information.

62

"'.

".6 -'-" "" ' '' ''""' , """-"" " . " . ".' " "" " " ."- : -" ." ."-".". ' " ." . .

CIP'OC.INP file

This file is used to link system initialization,
* driver, assembly language routines, and zatemodule *

~ into ClPROC.CMD, the executable file run on SBC 1 at
*** cluster 1.

ciproc =
sysinitl [code~ab[439]],data[ab[8001,mf@1,ad[82]],maD[alll],
sysdev,
asmrout,
zatemod

Cluster 1 RELATION.DAT file

S** This file keens the data used to build the relation
** table:

• evc id numdat noint alen bytes

**2 col col col col col

5 15 25 35 45

01 1 8c5S 50 6
03 1 8d84 50 9
00 0 0000 00 0

* Cluster 1 ADDRESS.DAT file

*** This file keeps the number of arouP addresses.
the cluster's zroua address(es) and the cluster's

* source address.

1,

'00000(00'b,'0000001'b

63

SYSINIT1.PLI file

SThis is the system initialization procedure for
** cluster I..

sysinitl: proc options (main);

%include 'sysdef.pli';
%replace

E7C _TYE by "@ 'b4;

/* main "/

call define cluster ('0001'b4);
/ must be called Drior to creatinR evc's :/

/*** USER **':I

* call create _evc (TRACK_ IN);
call create evc (TRACK OUT);
call create evc (MISSILEORDERIN);
call create evc (MISSILEORDER OUT);

/'** SYSTEM ***/

call create evc (ERB RE.D);
call create evc (ER?_WRITE);
call create seo (ERBWRITEREQUEST);

/4 distrib. man called after eventcounts have
been created -/

call distributicn _map (EVC _TYPE. TRACK_ IN, '0003'b4);
r. /* local and remote copy of TRACK IN needed /

call distributicn map (EVC _TYPE. MISSILE ORDER _ OUT,
',e.03 'b4) ;

/* local and remote copy of MISSILE ORDERCUIT
needed */

/* create driver */
call create proc V'fc'04, '80b4,

"26a5"b4, "08 Z'b4, "?OSf'b4,
'0439'b4. 'P?O'b4, ".€@?'b41;call await ('feb4, '01b4)

end sysinitl;

64

| . ,* ~ * ..

-, C2PROC.INP file

,* This file is usel to link system initializatio,
** driver, assembly language routines, and gatemodule *XC*
* * into C2?ROC.CMD, the executable file run on SBC 1 at
*** cluster 2.

c2Droc =
sysinit2 [code[ab[43911,datarab[900],m[O],ad[92],map[all]],
sysdev.
astor out,
gatemod

Cluster 2 RELATION.DAT file

** This file keeps the data used to build the relation "=

table:

, evc id numdat Doint alen bVtes

' col col col col col

5 15 25 35 45

31 1 8c58 t. 6
- 05 1 8dS4 20 3

B3 1 9dcd 5L 9
00 0 0000 00 0

Cluster 2 ADDRESS.DAT file

S*** This file keeps the number of group addresses,
$ the cluster's ;rouD address(es),and the cluster's

-. ~ source address.

| 1,
"00000000'b, '00000010'b,
'OeOV'0O'b,'eO~e10'b

65

4.

I- . - - , .. .j . , ' i . ,j . . * - . - . . - - ." -- _ -, '. . - - - - - . ". '

SYSINIT2.PLI file

• =This is the system initialization procedure for
• cluster 2.

sysinit2: Droc options (main);

%include "sysdef.pli';

Sreplace

EVC TYPE by '0'b4;

/* main */

call define cluster ('0002"b4); /* must be called prior
to creating evcs 4/

"" I /*'** USER * '* I
@

call createeve (TACK IN);
call create _evc (TACKOUT);
call create eve (MISSILE ORDER IN);
call createeve (MISSILEORDER-OUT);
call createeve (DELTA IN);
call createevc (DELTAOUT);

/-c*/ SYSTEM *,/

call create eve (ERB READ);
call create evc (ERBWRITE);

* call create-sea (ERB-WRITEREQUEST);

/* / istrib. map called after eventcounts have
been created /

call distributionmaD (EVC _TYPE, TRACK OUT, '0003'b4);
/* local and remote copy of TR.CK IN needed "/

call distribution-map (EVC TYPE, MISSILEORDER IN,
0~003'b4);

/ local and remote copy of MISSILE_ ORDERIN needed x/
call create oroc ('fc'b4. '80'b4,

'2Ca5"b4, '0900'b4, '06b'b4,
' 0439'b4. '080'b4, '0800'b4);

call await ('fe'b4. '01'b4);

end sysinit2;

66
• •

,..E:

N. " , " . ' ',' ' " ; " " , " .. ' _? - , ,_! . ''','
' '

" ' " " ' " " ' ' '" '" - " " ' " "

/** SYSDEF FILE SYSDEF.PLI David J. BREWER 1 SEP 84 */

/- This section of code is given as a PLI file to be 4/

. %INCLUDE'd with MCORTEX user proerams. ENTRY
/*, 4eclarations are made for all available MCORTEX
/ " functions.

DECLARE

advance ENTRY (BIT (8)),
/* advance (event count id) */

await ENTPY (BIT (8), BIT (16)),
1* await (event countid, awaitedvalue) */

create evc ENTRY (BIT (8)).
/* create evc (event count_id) *1

create proc ENTRY (BIT (8), BIT (8),
BIT (16), BIT (16), BIT (16),
BIT (16), BIT (16), BIT (16)),

/* create_proc (processor id, processorpriority,*/
stackDointer hiehest, stack see, ip /

1* code _seg, data_seR, extrasee)

create sea ENTRY (BIT (B)),
/* create sea (sequence_ id) */

preempt ENTRY (BIT (9)),
,/* preempt (processorid) */

read FNTRY (BIT (8)) RETURNS (BIT (16)),
/ read (event _count _id) */
/* RETURNS currenteventcount /

ticket ENTRY (BIT (8)) RETURNS (BIT (16)),
/* ticket (sequence id) 9/
/* RETURNS unioue ticket value */

*efine cluster ENTRY (bit '16)),

/* definecluster (localclusteraddress) */

distribution _aD ENTRY (bit (8), bit (8), bit (16)),

/* distribution_map (distribution_ type, id,
clusteraddr) */

67

.1 , . - " . -" " - ' - • - . - - " . " - ... ". " . - " - ' , ' ' ,' . - , ,, . , , ; ,% "I

add2bit16 ENTRY (BIT(16), BIT(16)) RETURNS (BIT (16));
/* add2bit16 (a 16bit #, another 16bit_,) /
/* RETURNS a_16bit_# + another16Eit - */

%replace

/*---
*** EVCSID's ***

(1) USER

TRACK IN by 91'b4.
TRACK-OUT by '02'b4,
MISSILE_ORDER_ IN by '03'b4,
MISSILEORDEROUT by '04'b4,
DELTA IN by '05'b4,
DELTa-OUT by '26'b4.

/* (2) SYSTEM

* ERB READ by "fc"b4,
ERB WRITE by 'fd'b4,

. .. SEQUENCER NAMES

(I.) USER

/* (2) SYSTEM */

ERBWRITE_REQUEST by 'ff'b4.

,' ',/* -- -- -

** SHARED VARIABLE POINTERS *

(1) USER

"/* (2) SYSTEM /

block_ tr _value by '8000'b4,
xmit_ptr value by "8079"b4,
rcvPtr_-value by '8666"b4,

ENDRESERVE by 'FFFF-b4;

i 68

N13010.DCL file

treplace

'1/ I/O ort addresses

These values are specific to the use of the INTERLAN
NI3010 MULTIBUS to ETHERNET interface board. Any change
to the I/O port address of 'OObO' hex (done so with a DIP
switch) will reouire a change to these addresses to
reflect that change.

command _register by 'bO'b4,
command status register by bl'b4,
transmit _data _register by 'b2'b4,
interrunt status reR by "b5'b4,
interrupt enable_ register by 'bS'b4,
high byte_ ount reR by 'bc'b4,

-l cw _byte count rea by 'bd'b4,

/ end of I/O port addresses */

/* Interrupt enable status register values */

lisable ni3010 interrupts by '00'b4,
ni3010-_ntrpts-disabled by '0e'b4.
receive block available by '04'b4,
transmit dma done by '06'b4,
receivedmadone by "'7'b4,

/~end register values ~

'2/* Command Function Codes */

module interface loopback by '0l'b4,
internal loopback by '02"b4,
clear loopback by '03'b4,
co offline by "08'b4,
,o online by '09'b4,
onboar- diagnostic by 'a'b4.
clr insert source by "3e'b4,
loadtransmit _data by '29'b4,
load and _send by '29"b4,
load_-zroutaddresses by '2a"b4,
reset by "3f'b4;

/* end Command Function Codes
V.6

-'I'

.

"" '?i' -° ' ¢, : " " "' " " " " " . . ".9

SYSDEV.PLJI file (driver)

sysdev: orocedure;

/* Date: 25 NOVEMBER 1985

Programmer: Reinhard HAEGER

Module Function: To serve as the Ethernet Communication
Controller Board 1NI3010) device
handler (driver). This process is
scheduled under MCORTEX and consumes
'Ethernet Reauests Packets (ERP)
generated by the SYSTEMIO routine in
LEVEL2.SRC.
It creates a relation table that keeps
information about the interrelationship

* between eventnounts and user shared
lata, and uses this information for
producing and processing Ethernet
messages.

This driver is the version orovided by David Brewer
modified in order to ensure system-wide data sharing.
The Transmit _Data _Block and the Receive Data Block were
chaneed to keep 1500 bytes of data.
*ew Procedures MakeTable and Make Message were added,
and procedure Process _Packet was comoletely changed to
provide cluster external user shared data exchange.
Procedure Transmit _Packet was modified to provide
flexible exact message length to the ECCB if the length
is greater than 62 bytes, and minimum message length if
the messape is 60 bytes or less.

%replace

evc_type by "00"b4,
erb block len by 20,
erb block _ len ml by 19,
infinity by 32767;

%include "sysdef.pli';

70

[%%

- ~ ~ 7 -A &APk--

.. f,.' 5*5

DECLARE

1 erb(O:erbblock len ml) based (blockptr),
2 command bit (8),
2 typename bit (8),
2 name value bit (16),
2 remote addr bit (16),

%.

1 transmit data _block based (XMit ptr),
2 destination address a bit (8) ,
2 destination-address b bit (8),
2 destination address c bit (8),
2 destination-address-d bit (8),
2 destination address e bit (8)
2 destination _addressf bit (8)
2 source address a bit (8)
2 source-address-b bit (8),
2 sourceaddress c bit (9),
2 sourceaddress d bit (8),
2 source address e bit (8)
2 source-address f bit (8)
2 type field a bit (8)
2 type_field-b bit (8),
2 data (1500) bit (9),

1 receivedata block based (rcv_ptr),

2 frame _status bit (8),
2 null _byte bit (8)
2 frame _lengthlsb bit (8)
2 frame length msb bit (8)
2 destinationaddress _a bit (8)
2 destination_address b bit (8)
2 destinationaddress _c bit (8)
2 destinationaddress _d bit (8)
2 destination address e bit (8)
2 destinationaddressf bit (8)
2 source address a bit (8)
2 source_ address b bit (8)
2 source address c bit (8)
2 source address _d bit (8)
2 source address e bit (8)
2 source address f bit (8)
2 type _field _a bit (8)
2 type field b bit (8)
2 dataT1500)- bit (8)
2 crc _msb bit (8)
2 crc uloer _middle _byte bit (8)
2 crc _lower _middlebyte bit (8)
2 crc isb bit (8)

71

eptr pointer,
erp vect(4) bit (9) based (e Dtr),
(maxqbytes,bytecount) fixed bin (15),

1 rel tab(100),
2 evc id bit (8),
2 numdat fixed bin (7),
2 data(10),

3 point ointer,
3 Qlen fixed bin (7),
3 bytes fixed bin (15),
3 next _out fixed bin (7),

3 next in fixed bin (7),

(xmit_ tr, rcvptr,blockptr) pointer,
index fixed bin (15),
(addr_e, addrf) bit (8),
address file,
copy ie _reeister bit (8),
(cluster-addr,erb write _value,i) bit (16),
(J,k) fixed bin (15),
reRvalue bit (8) ,

;7: write io_lport entry (bit (8), bit (8)),
read i_ port entry (bit (8), bit (8)),
initialize cpu_ interrupts entry,
enable cpu interrupts entry,
disable_cpu _ interrupts entry,
write bar entry (bit(16));

,-. end declaration */

.,. %rep lace

/* codes soecific to the Intel 8259a Programmable
Interrupt Controller (PIC)

icwl_portaddress by 'c,9"b4.
/* note that */ icw2 Dort address by "c2'b4,
/ icw2,icw4:,*/ icw4_port address by "c2'b4,
/* and ocw ,/ ocw port_address by "c2'b4±,
/* use same */
/* port adir '/

/* note: icw ==> initialization
control
word

ocw ==> operational
command
word

K" 72

1. L

icwl by '13'b4,

/* single PIC configuration, edge

trigeered input

icw2 by "40'b4,

/* most sienificant bits of vectorinz
byte; for an interrupt 5,
the effective address will be
(icw2 + interruDt #) * 4 which
will be (40 hex + 5) * 4 = 114 hex

icw4 by 'f'b4,

/* automatic end of interrupt
and buffered mode/master */

ocwl by "8f'b4;

/* unmask interrupt 4 (bit 4),
I* interrupt 5 (bit 5), and
/* interrupt 6 (bit 6), mask all others /

/* end P259a codes */

I* include constants specific to the NI3010

board

%include 'ni3010.dcl';

/* Main BodY x/

/* check message
put skiD(2) list('startinR make table'); */

call make table;

/* check message
1ut skiD(2) list('make-table done'); ./

call write ioport(interrupt enableregister,
-disable ni30linterrupts);

call initialize pic;
call initialize _cou interrupts;
call read io_port (command status _register.reg_ value);
call Derform command (reset);

73

•.°

call programgroupaddresses;
/* assignments to the source and destination address

fields that will not chance 2/

call performcommand (clr insertsource);
/* N13010 performance is enhanced in this mode $/

-4. unspec(blockptr) = blockptrvalue;
unspec(rcvptr) = rcvptr value;
unspec(xmit_ptr) = xmit_ptr_value;

.4' /* make one time assignments to transmit data block */

transmit _data block.destinationaddress a = "q3"b4;
transmit data block.destination address b = ''b4;
transmit data _block.destinationaddress-c = "0'b4;
transmit data block.destination address d = "0'b4;
transmitdata_block.source_addressa = '03'b4;
transmit data block.source address b = "00'b4;
transmit _data _block.sourceaddress c = "00'b4;
transmit _datablock.sourceaddress d = "00'b4;

/* get the local cluster address - file was
opened in proc progra-n_vroupaddresses */

get file (address) list (addr_e, addr_f);
transmit data block.source address e = addr e;
transmit-data-block.source-address f = addr-f;

- cluster addr = addr e addr f;put skip (2) edit ("'** CLUSTER ,cluster addr,

Initialization Complete **')
(col(15),ab4(4).a)q;

i = "0 01'b4;
call perform command (go online);

/* at this point copy_ie_ rep = RBA , but
ie_reg on N13'01 is actually disabled */

call disableepuinterrupts;

do k = 1 to infinity;
/* note: interrunt not allowed during a

call to MCORTEX primitive */

erb write value = read(EPB WRITE);
/*-In the MXTRACE version-of the RTOS

all primitive calls clear and
set interrupts (diawnostic merssage
routines), so the N13010 interrupts
must be disabled on entry to MXTEACE ':/

.i7

~~~~~~~~~~~~~~~~~~~~.,...-..,,.'.w...w. .-... ......... , ... . . . . ..-....--............-.



do while (erb write value < i);
/* busy waitIng */-
erb write value = read(ERWRITE);
copy ie recister=receive block available;
call write io_port(interrupt enable register,

receiveblock-available);
call enable_cu _interrupts ;

/* if a packet has been received,this
is when an interrupt may occur - can
see that outbouni packets are always
favored. */

do j = 1 to 1000;
/* interrupt window for packets received */

end; /* do j */
call disable _cu interrupts;
if (cooy_ie register = receive dma done) then
do;
/* receive 2MA operation started, so let

finish. /
call enable cpu interrupts;
do while (copy ieregister = receive dma done);
end;
call disable cpu_interrupts;

end; /* ift P/

copyie_register = disable ni3010 interrupts;
call write ioport(interrupt enable register,

disable-n130le interrupts):
end; /* busy */

/* EBB has an ERP in it, so process it */
/* no external interrupts (RBA) until

the ERP is consumed and the packet
gets sent */

index = mod((fixed(i) - 1), erbblock len);
/* 32k limit */

transmit data block.destination address e=
substr(erb(index).remote addr, 1,8);

transmit data block.destir.ation address f=
substr(erb(inlex).remoteadir, 9,S);

/* put overlay over ERP */

e otr=addr(erb(index).command);

call make message;
call advarce (ERB READ);

/* caution here 11!
an ADVANCE will result in a call to VP$SCHEDULER,
which will set CPU interrupts on exit.
It's the reason NI3010 interrupts are disabled
first in the Do While loop above. */

4
75

A.

'". s p -+... : - - + I -" .. " b- . h . '< _+ -



/* packet ready to go, so send it ~
call transmit packet (bytecount);

/* cony ie _register=RBA, but not actual register *
call disablecpuinterrupts;

/* settine uD for next ER? contsumption *
i = add2bit16(i, '0001'b4:);

end; /* do forever *
/* -and miain body *

make_-table: procedure;

declare
relation file,
(J,i) fixed bin (15),
eof bit(S);

onen file (relatior) stream input;
i=0;
eof='0'b4;
do while (eof='OWb4)

1* read data from relation.dat file *
zet file (relation) edit(rel tab~ii).evc_ id,

rel tat i) .n'mdat)
(column(5),b4(2) ,col-imn(15) ,f'2)) ;

do j=1 to (rel _tab(i).numdat);
/* read data for all related items *

get file (relation) edit
(unspec (rel tab(i ) .data(.4) .point),
reltab(i)Thdata(j).ale!I,
rel _tabMi.data(j).bytes)

(column(25),b4(4:),column(35),f(4:),colurn),ft)
maxcabytes=max (maxo bvtes,

en;rel tab(i) .lata(J).bytes*rel _tab(i).data(j).almr.);

1* if sentinel is reached *
if rel-tab(i).evc _id ='00'b4 then
do;

eof='1'b4;
put skip list( 'longest data aueue at this cluster:',

maxabytes, ' bytes");
end;
end;

end make_ table;

76



make-message: procedure;

declare
datptr pointer,
dat -vect(1500) bit (8) based (catptr),
(next _ out,r,J) fixed bin (7),
(off,start.last,k) fixed bin (15);

/* check for evce*
if erp-vect(1)=EVC-TYPF then
do;

bytecount=4;
do k=1 to 4;

/* put evc info into data field *
transmnit _data_ block.data(k)=erpvect(k);

end;

/* check messae
put skip list('::::',transmit _data _block.data(1),':: q

transmit _data block.data(2),':: .
transmit data block'.data (3),'::',
transmit _data_ block.data(4),': ::: '4;

r=1;
/* find respective relation table entry *

do while ((rel _tab(r).evc id =erp vect(2)) &
(rel _tab(r).evc-id '0'7 )

r=r+1;
end;

1* If eve entry *
if rel _tab(r).evc _id -= '0O'b4 then
do;
/* for every related Itemi*

do J=1 to rel -tab(r).numndat;
start=bytecount - 1 /* find where to put Vc/
last=rel _ tab(r).data(J).bytes; 1* how long it is *
bytecount=bytecount + last; /* keep track *
dat-ptr=rel tab(r).data(j).point; /*align. datvect*/
next out=rel _tab(r).data(,i).next out;

/* Eomnute offset of item in data queue /
off=(rel _tab(r).4ata(j).bytes * next _cuit) + 1;
/* compute next slot numnber to &,o *7

rel-tab(r).data(J.).next _out=modinext out + 1,
rel-tab(r .data(j).alen);

do k=0 to (last-i);
/* put item' s bytes into data field *

transmit data block.data(k+start )=dat vect(k+off);
end;

end;
end;

77



.*r m- - V --7

/* compute total bytecount for message */
bytecountbytecount + 14;

end;
else do; /* if not evc *
end;

end make-message;

initialize 9ic: procedure;

DECLAPE
write io port entry (bit (8) , bit(S));
call write io_Dort (icwl_port_address,icwl);
call write ioport (icw2_portaddress,lcw2);
call write io_ Dort (icw4_port address,icw4):
call write _io_port (ocwport_address,ocwl);

end initialize-Pic;

perform command: procedure (command);

DECLARE
command bit (8)
reRvalue bit (83
srf bit (8)
writeioport entry (bit (8) , bit (2)),
read_ioport entry (bit (8) , bit (8));

srf = '0b4;
call writeio Dort !command rezister,command);
do while ((srf & 'Ol'b4) = 700'b4);
call read ioport (interruot status_reg, srf);
end; /* do while -1
call read _io_port (commandstatus register, reR value);
if (rezvalue > "'l'b4) then
do;

/* not (SUCCESS or SUCCESS with Retries) =/
put skip edit ("'*' ETHERNET Board Failure *')

(col(20) ,a);
/ when this occurs, run the dia,.nostic

routine T3010/Cx, where x is the
current cluster number v'/

- t D"--' ston;

end; /* itd -/

- end perform_ command

-

1'-

'p/

9 . . " " " ". . . .•" " "£:'.. .'v . ;"--.....



transmit packet: procedure (bytecount) external;

DECLARE
p pointer,
byte count fixed bin (15)
bytevector(2) bit (8) based (D),
srf bit (3)
reg value bit (8)
write_ioport entry (bit (8), bit (8)),
read io_port entry (bit (B), bit (9)),
enable cpuinterrupts entry,
disable _cpu_interrupts entry.
writebar entry (bit(16));

/* begin *
srf = ' 0 b4;

call write_ bar (xmit ptr value);

/* if message longer than minimum size /
if (byte-count > 60) then
do;
p=adlr(bytecount);

/* call with exact bytecount */
call writeioport(hih_bytecount_re.,,bytevector(2));
call write_ioDort(lowbyte count _reg,bytevector(1));

end;

.*-" / if message is not loneer than minimum size /
else do;

/* call with minimum bytecount of 60 /
call write _io_port(hi~h_byte_count reg,'30'b4);
call write-io. Dort(low_bytecountreRg3c'b4);

end;

cooy_ie_ register = transmit _dma _done;
call write icport(interrupt _enable register,

transmit _dma done);
call enablecpu_interrupts;

io while (copy_ie_register = transmit _ima _done);
end; /* loop until the interrupt handler

takes care of the TDD interruDt -

it sets copy le register = RBA */
call Perform _command (Toad andsend);
put skip list('transmitting');

end transmitpacket;

79

--- -,,-x~ s-



HL interrupt handler: procedure external;

/* This routine is called from the low level
8086 assembly language interrupt routine /

DECLARE

write io_port entry (bit (8), bit (8))
read 1-ODort entry (bit (6) , bit (8)),
enable cpu_interrupt s entry,
disable_cpu_interruDts entry,
write bar entry (bit(16));

/* begin */

call writeioDort(interruDt enable reister,
disable ni310 interrupts);

if (copy_ieregister = receiveblockavailable) then
do;

call write bar (rcv Dtr value);
call write-io_port(high-byte countreg,'5"b4);
call write _ioport(low_byte_countreR,'f2'b4);

/"* initiate receive DMA */

copy ie register = receive dma done;
call-wrrteio nort(interru:t _eHable register,

receive dma done);

end; /* do */
else
if (copy_ie_reaister = receivedmadone) then
do;

call process _acket;
copyieregister = rereive block available;
call write io Dort(interrupt enable reeister,

v T receive block _available);
end; / if then do */
else
if (cony_ierezister = transnit _dma _done) then
do;

coDY ie reeister = receive block available;
* / NI301 interruDts disabled on entry */

end; /* if then do */

eni HL_ interrupt _handler;



process packet: procedure;

DECLARE

evcil bit (S),
local-evc value bit (16).
(dat _ntr,p) Dointer,
remote evc value bit (16) based (p),
dat vect'.l500) bit (8) based 'datpt)
(off,start,last,k) fixed bin (15),
(next-_in,r,j) fixed bin '17);

put skip list('receiving');
* /* check for evc ~

if receive-data-block.data(1)=evc _type then
do;
p = addr(receive _data block.data(3));
evcid=receive data _block.data(2);
local _evc value = reed(evoid);
if lo;cal _evc _value < remote _evc value then

/* Pind evc entry in relation table ~
0 do while ((rel _tab(r).evc _id =evcid) &

(rel _tab'r).evc _id 'O'b))

e nd;
if rel _tab(r).evc-id '70'b4 then
do;

bytecount=4; /* *lumo over evc info /

do *j=1 to rel _tab( r).numdat;
start=bytecount-1i /* compute start of item ~
last=rel _tab(rI.datafJ).bytes;/ and. lea~th ~
bytecount=bytenount+last; /* and itemr's end ~
next _in=rel tab~'r).data(i).next in;
/* comn~ute offset in data aueue ~

off=(last*next _in) + 1;
/* compute next slot nunbe- to fill *

rel _tab'r).datal.j).next _iri=mnod'next -in+1,
rel _tab( r) .dataj a .len)

dat _ tr=rel tab'r).data(ji).Doint; /* align datvect*/

do k=O to (last-i);

Sri * put itemn bytes irto data aueue *
dat _vect(k+of±')=receive_ data _block.dataK'!,+start);

end;
end;

end;



/* update local evc value *
do while (local _evc-value < remote evc _value);

call advance (evcid);
local evc_ value = add2bitl6(local-evc _value,'0?2?1'b4);

end;
end;

else do; /* if not evc
end;

call disable-cnu_ interruots;

end.;

end process Dacket;

Drogram_group_addresses: Drocedure;

0
DECLARE

1 zrouD addr(40) based (zroUD _ptr),
2 1 c _Pg-r o u f iel1d _a b it '(9).
2 mc _group_ field _b bit (9),
2 nc _zrouv field c bit (8).
2 nc _grouo_ field _d bit (8P),
2 mc _aroup field e bit (8),
2 mc _aroup-field-f b it (8);

DECLARE

(group ptr,p) Poirter.
(field _e, field _f) bit (8),
b it _BgrOUps bit ( ) based 'p),
(i.num-groups.,rrouDs _tirnes _6) fixed bin(r)

unsrec(RrouD _Vt!) = xrnit _Dtr _value;
open file (address) stream 1iput;
get file (address) list (nurn-groups)
Io i =1to num-grouips;

group addr~i).mc _grouD field a = 03'b4;
group addr(i).rc group field _b = O';
groun addr(i).Tc _ roup _field _c = O'4
zroup-addr(i).mc _grOUtfield- _='0'4

82



get file (address) list (field e,field f);
*" erouDnaddr(i).mc _rouDfield e = field-e;

group addr(i).mc_group field f = field f;

end; /* do i */

call disable cpu interrupts;
call writebar (%mitptrvalue);
call write _ioport(highbyte count-reg, "0 'b4;
groups _times 6 = 6 * n um groups;
p = addr (groupstimes 6);
call writeio _ort(lowbytecount reg, bit_8_groups);
coDy ie register = transmit _dma _done;
call write io_portfinterrupt enable register,

transmit dma lone);
--. call enable cpu interrupts;

do while (copy_ie_ register = transmit dma done);
end; /* loop until the interrupt handle-

takes care of the TDD interrupt -
it sets COPY _EREG = R3A */

call perform cormmand(load group addresses);

end prearam_groupaddresses;

/** *'***** * *.* ***** ***X X :

end; /* system device handler ard packet processor
(driver) */

ASMROUT.AE file

extrn hl interrupt handler : far

public write io port
public read ioport
public write bar
public initialize cpuinterrupts
public enable_cpu_interrupts
public disable cou interrupts

83

:'; ;-- .-. ,.:. --,.;.. - .,-.. . -= . .- . . ::-z< : -. '. . --: .. ? , '- . .'.- :- . -.'.- . ,2''L. -:- . - (v'- .q-C , -'* ,- -*.



write-io_port:

Parameter PassinR Specification:

entry exit

parameter 1 <port address> (unchaned>

; parameter 2 <value to be outputted> <unchan:ge1>

dseg
port taddress rb 1

cseR
push bx! push sil Dush dxl push ax
mov si, [bxl
mov al. [si]
mov Dort address, al
mov si, 2[bx]
mov al. [sil
mov d l-, Dort _address
mov dh, 00h

0 out dx. al
pop ax! pop dx! poD si! pcO bx
ret

reaio tort:

Parameter Passina Snecification

entry exit

; arameter 1 <Dort address) <unchanaed>
; parameter 2 <meaningless> <register vallie

cseR
push bx! push si! rush dx! push ax
mov si, [bx]
may al. [sil
mov Dort address, al
mov si, 2[bx]
mov 1., port _address
mov dh, 00h
in al, dx
mov [sil , al
pO ax! po dx! poD sil Dop bx!
ret

V*.

84

44r



write-bar:

; Parameter Passing Specification

; parameter 1 (and only): the address of the data block
to be transmitted or received.

dseg

e barport eau 0b9h
h bar_port eau Obah
1 _bar-port equ Obbh
temD- _-byte rb 1
tempes rw 1

cser

; This module comnutes a 24 bit address from a 32 bit
; address - actually it's a combination of the FS
; register and the IP passed via a parameter list.

0 ush bx! push axI Dush cxI nush esl Dush dx! push si

may dx, 080 ; shared memory segment
mov es, dx
mov tempes, es
mov ix, es
mov si, [bxl
racy ax, [sil
rov cl, 12
shr Ix, cl
ma tem e _byte, dl
mov ix, tempes
mOV cl, 4:
shl dx, cl
add ax, dx
jnc no add

add 1: inc temp_e_byte
no add: out 1 bar port, al

mov al, ah
out h bar _Dort, al
mov al, temD e byte
out e_bar port, al
POP si! PoD dx! DoD es! Don cx! pOn ax! pop bx
ret

85

NrV - . V Vl.. 2 .~



initializecpu-iriterruvts:

;Module Interface Snecification:

Caller: Ethertest(PL/I) Procedure

Parameters: NONE

initmodule cseg common
orw 114h
int5 offset rw 1
int5_ segment rw 1

cseR

push bx
push ax
mov bx. offset interrupt-handler
rnov ax. 0
push ds
'n iov ds. ax
nov ds:int5_ offset. bx
mov bx, cs
mov ds:int5_seement, bx
pop ds
pop ax
pop bx
s ti
ret

enable_cDU-interrupts:

;Module Interface Specification:

Caller: Ethertest(PL/I) Procedure

Parameters: NON4E

sti
ret

86

ow



disable cou interrupts:

; Module Interface Specification:

Caller: Ethertest(PL/I) Procedure

Parameters: none

cli
ret

interruDthandler:

p, ; I?, CS. and flags are already on stack
; save all other reeisters

push ax
push bx
push cx
push dx
push si
push di
push bp
push ds
push es
call hl interrupt _handler

; high level source routine
; In Ethertest Module (PL/I)

; restore registers

pop es
pop ds
pop bp
pop di
DOD St
pov dx

pop cx
pov bx
PoD ax
sti
iret

eni

87

~74



* GATEMOD / GATETRC File GATEM/T.aG6 BREWER 1 SEP 8e 4/

;* This module is Riven to the user in obj form to link =/
, with his initial and process modules. Any changes to */
;* user services available from the OS must be reflected /
; here. In this way the user need not be concerned with =/
;* actual GATEKEEPER services codes. Two lines of code =/
; are contained in conditional assembly statements and /

;* control the output to be GATEMOD or GATETRC depending */
; on the value of GATEMOD at the code start. */
* ------------------------------------------------------------

; This module reconciles parameter passing anomalies
; between MCORTEX (written in PL/M) and user programs

;* (written in PL/I). */

% All calls are made to the GATEKEEPEP in LEVEL2 of the /
; OS. The address of the GATEKEFPER must be given below.*/

*:------------------------------------------------------------------------

* The ADD2BIT16 function does rot maKe calls to MCODTEX. */
; It's Durpose is to allow the addition of two unsigned =/
;* 16 bit numters from PL/I Droarams.

DSEG

GATEMOD EOU 0 ;*= SET TC ZERO FOR GATETRC
;4** SET TO ONF FOR GATEMOD

PUBLIC ADVANCE ; THESE DECLARATIONS MAKE THE
PUBLIC AWAIT ;' ' GATEKEEPER FUNCTIONS VISIBLE
PUBLIC CREATE EVC : TO EXTERNAL POCESSES
PUBLIC CREATE _PROC
PUBLIC CREATE SEQ
PUBLIC PREEMPT
PUBLIC READ
PUBLIC TICKET
PUBLIC DEFINE CLUSTER
PUBLIC DISTRIBUTION MAP
PUBLIC ADD2BIT16

AWAIT IND EcU e THESE APE THE IDENTIFICkTION
ADVANCE IND EU 1 ;**m CODES RECOGNIZ7D BY THE
CREATE EVC IND EOU 2 GATEKEEPER II LEVEL II CF
CREATE SEQ IND EOU 3 ;**= MCORTEX
TICKET IND ETU 4
READ IND EQU 5
CREATE PROC IND EOU 6
PREEMPT IND EOU 7
DEFINE CLUSTEP IND EOU 9
DISTRIBUTIONMP_ IND EQOU 9

88



IF GATEMOD
GATEKEEPER IP DW 0036H
GATEKEEPER-CS DW OBADH
ELSE
GATEKEEPER IP DW 0068H ;##4# 1 #### < ---------------
GATEKEEPER-CS DW 0B4CH ;### 2 ###u <---------------
ENDIF
GATEKEEPER EOU DWORD PTR GATEKEEPER IP

CSEG

AWAIT *** AWAIT * AWAIT *** AWAIT *** AWAIT ** **/

AWAIT:

PUSH ES
MOV SI.2[BXj ;SI <- PNT TO couNT AWAITED
MOV BX,[BXI ;BX <-- PNT TO NAME OF EVENT
MOV AL.AWAITIND
PUSH AX ;N <-- AWAIT INDICATOR
MOV AL,[BX]
PUSH AX ;BYT <-- NAME OF EVENT
MOV AX,[SI] ;AX <-- COUNT AWAITED
PUSH AX ;WORDS <-- COUNT AWAITED
PUSH kX ;PTR SEG (-- UNUSED WORD
PUSH AX ;PTR-OFFSET <--UNUSED WORD
CALLF ,ATMKEEPER
POP ES

RET

;*** ADVANCE *** ADVANCE *** ADVANCE *'* ADVANCE ********/

ADVANCE:

PUSH ES
MOV BX,[3X] ;BX <-- PTR TO NAME OF EVENT
MOV AL,ADVANCEIND
PUSH AX ;N <-- kDVANCE INDICATER
MOV AL, [3X]
PUSH AX ;BTT <-- NAME OF EVENT
PUSH AX ;WORDS <-- UNUSED WORD
PUSH AX ;PTR SG <-- UNUSED WORD
PUSH AX ;PTR-OFFSET <--UNUSED WORD
CALLF GATEKEEPER
POP ES

RET

89

,2



;** CREATEEVC CREATE EVC * CREATE EVC /

CREATEEVC:

PUSH ES
mOV BxrBX] ;BX <- PTR TO NAME OF EVENT
.MOV AL,CREATE EVCIND
PUSH AX ;N <-- CREATEEVC INDICATOR
MOV ALP[BXI
PUSH AX ;BYT <-- NAME OF EVENT
PUSH AX ;WORDS <-- UNUSED "ORD
PUSH AX ;PTR SEG <-- UNUSED WORD
PUSH AX ;PTR-OFFSET <--UNUSED WORD
CALLF GATEKEEPER
POP ES

RET

K *** CREATESEQ CREATE_SEQ *** CREATESEQ /

CREATESEQ:

I PUSH ES

m MOV BX,[BX] ;BX <-- PTR TO NAME OF SEQ
- MOV AL.CREATESEQ IND

PUSH AX ;N <-- CREATESEQ INDICATER
MOV AL, BX]
PUSH AX ;BYT <-- NAME OF SEQ

. PUSH AX ;WORDS <-- UNUSED WORD
PUSH AX ;PTRSEQ <-- UNUSED WORD
PUSH AX ;PTROFFSET <--UNUSED WOD
CALLF GATEKEEPER
POP ES

FET

;*** TICKET TICKET * TICKET *** TICKET * TICKET ***/

TICKET:

* PUSH ES
PUSH ES ;TICKET NUMBEF DUMMY STOAQE
MOV CX,SP ;POINTER TO TICKET NUM3ER
MOV BX,[BX] ;?X <-- PTR TO TICKET NAME
MOV AL,TICKETIND
PUSH AX ;N <-- TICKET INDICATER
MOV ALJ[BX]
PUSF AX ;BYT <-- TICKET NAME
PUSH AX ;WORDS <-- UNUSED WORD
PUSH SS ;PTR SEG <-- TICKET NUMBE:- SEG
PUSH CX ;PTROFFSET (--TICKET NUMBER POINTER

90



CALLF GATEKEEPER
POP 3X ;RETRIEVE TICKET NUMBER
POP ES

RET

;* READ READ READ *** READ 4* PEAD * READ * /**/

READ:

PUSH ES
PUSH ES ;EVENT COUNT DUMMY STORAGE
MOV CXSP ;POINTER TO EVENT COUNT
MOV BX.[BX] ;BX <-- PTR TO EVENT NAME
MOV AL.PEADIND
PUSH AX ;N <-- READ INDICATER
MOV AL,[BX]
PUSH AX ;BYT <-- EV.NT NA.ME
PUSH AX ;BYT <-- UNUSED WORD
PUSH SS ;PTR SEG <-- EVENT COUNT SEGMENT
PUSH CX ;PTR-OFFSET <--EVENT COUNT POINTE?
CALLF GATEKEEPER
POP BX ;RETRIEVE EVENT COUNT
POP ES

RET

; CREATEPROC * CREATEPROC * CREATEPROC /

CPEATEPROC:

PUSH ?S
MOV SI.14[BX ;SI <-- PTR TO PROCESS ES
PUSH WOPD PTR [SI ;STACK PPOCESS ES
MOV SI,12[Bx] ;SI <-- PTR TO PROCESS DS
PUSH WORD PTR [SI] ;STACK PROCESS DS
* oV SI. 19[BX] ;SI <-- PT? TO PROCESS CS
PUSR WORD PTR [SI] ;STACK PROCESS CS
MOV SI, 9[BX1 ;SI <-- PTR TO PROCESS IP
PUSH WORD PTE [Sl ;STbCK PPOCESS IP
MOV SI. 6[BX] ;SI <-- PTR TO PROCESS SS
PUSH WORD PTR [SI] ;STACK PPOCFSS SS
MOV SI, 4[BX] ;SI (-- PT? TO PROCESS SP
PUSH WORD PTR [SI] ;STACK PROCESS SP
MOV SI,2[BX] ;SI <-- PTR TO PROCESS PRIORITY

* MOV A, [SI] ;GET PROCESS PRIORITY
MOV SI, []X] :SI <-- PTR TO PROCESS ID
MOV AL,[SI] ;GET PROCESS ID
PUSH AX ;STACK PDOCFSS PFIORITY AND ID
mOV CX,SP ;POINTER TO DATA
MOV ALCREATE PROC IND

91



PUSH AX ;N <-- CREATE PROCESS IND
PUSH AX ;BYT <-- UNUSED WORD
PUSH AX ;WORDS <-- UNUSED WORD
PUSH SS ;PROC PTR SEGMENT <-- STACK SEG
PUSH CX ;PROC-PTR OFFSET <-- DATA POINTER
CALLF GATEKEFPER
ADD SP,14: ;REMOVE STACKED DATA
POP ES

RET

;** PREEMPT =' PREEMPT PREEMPT ='= PREEMPT /

PREEMPT:

PUSH ES
MOV BX,[BX] ;BX <-- PTR TO NAME OF PROCESS
MOV AL,PREEtPTIND
? ?USH AX ;N <-- PREEMPT INDICATER
MOV AL,[BX]
PUSH AX ;BYTE <-- PREEMPT PROCESS NAME
PUSH AX ;WORDS <-- UNUSED WORr
PUSH AX ;PTRSEG <-- UNUSED WORD
PUSH AX ;PTROFFSET <-- UNUSED WORD
CALLF GATEKEEPE.i
POP ES

RET

DEFINECLUSTER ' DEFINE CLUSTER **"::

DEFINE CLUSTER:

PUSH ES
MOV BX, [BX] ;BX <-- PTR TO LOCA L$CLUST-R$ADDR

.AN MOV AL, DEFINE_ CLUSTFR IND
PUSH AX :N <-- DTFIN _ CLUSTER IND
PUSH AX ;3YT <-- UNUSED iC4D
PUSH WORD PTP [BX; WORDS <-- LOCALtCLI1STYR.ADD.
PUSR AX ;PTR SEG <-- UNUSED WCRD
PUSH AX ;PTR OFFSET <-- UNUSEr NCRD
CALLF GATEKEFPF?
POP ES

"-. RET

92



DISTRIBUTION-MAP DISTRIBUTON MAP *

DISTPIBUTION MAP:

- ~ PUSH ES
MOV SI, 4[?x] ;SI <- PTR TO GROUP .ADDRESS
PUSH WlORD PTR (SI] ;STACK THE GROUP ADDRESS
MCV SI, 2[BX] ;si <-- PTR TO Ir OF MAP-_TYPE
MOV AH, [SI]
MOV SI, rBX] ;SI <-- ?TR TO MAPTYPE
MOV AL, LSI] ;AL <-- MAPTYPE
PUSH AX ;STACK ID AND MAPTYPE
MOV CX, S? ;POINTER TO DATA
MOV AL, DISTRIBUTION _MAP_ IND
PUSH AX ;N <-- DISTRIB _MAP_ IND
PUSH AX ;BYT <-- UNUSED WlORD
PUSH AX ;WORD <-- UNUSED WORD
PUSH SS ;MAPPT?._SEG <-- SS
PUSH CX ;MAP PTR _OFFSET <- DATA PTR
CALLF GATEKEEPVR

- ~ ADD SP, 4
pop ES
RET

;*ADD2BPIT16 **3f AD-D2?IT16 ADD2EIT16 ** ADD22IT16 ii*/

ADD2?IT16:

MOV SIIIBX1 ;SI <-- PT? TO BIT(16)#1
MOV BX,2[BXl ;BX <-- PTR TO BIT(16)#?2
MOV BX,[BX] ;3X <-- BIT'16)#2
ADD BXJrSI1 ;Bx <-- BIT(16)#l + 31IT(16):'2

RET

'-S END

93

62



APPENDIX E

THE DEMONSTRATION PROGRAM

The demonstration program is a combination of four

modules that simulate gather'ing and processing track

information and calculating direction and launcher number

for missile launchers.

It was not a goal of this demonstration program to

provide a valid algorithm for a real system, but rather to

show the synchronization of distributed asynchronous

processes with different execution times, working with

different length shared data queues, that reside at

different addresses at different clusters. Another goal was

to demonstrate the systems ability for processes working in

shared buffers, or with local copies of shared data items,

or a combination of both.

Process trkdetec simulates the track detection by

producing x, y, and z track data. The track information is

put into the 50 slot queue TRACK.

Process trkrprt simulates the track movement calculation

by producing dx, dy, and dz values from the comparison of

two consecutive track informations. It consumes TRACK data

and puts delta information into the 20 slot queue DELTA.

Process mslorder simulates the missile launcher

direction calculation. It consumes TRACK data and DELTA data

and combines these into simulated azimuth and elevation

information and assigns a launcher. These data are put into

the 50 slot queue MISSILEORDER.

Process msltrain simulates the missile launcher training

by consuming MISSILEORDER data and displaying launcher

number, launch number, azimuth, and elevation.
For demonstration purposes each process displays its

calculated values and its status (e.g. waiting, going, done,

L 94



queue full, etc.)

The program was successfully run in three different

constellations:

i.) Process trkdetec and process msltrain multiplexed on

one SBC, and process trkrprt and process mslorder

multiplexed on a second SBC in the same cluster (cluster 2).

2.) Process trkdetec and process msltrain multiplexed on

one SBC in cluster 1, and process trkrprt and process

mslorder multiplexed on one SBC in cluster 2.

3.) Process trkdetec on one SBC and process msltrain on

another SBC in cluster 1, and process trkrprt on one SBC and

process mslorder on another SBC in cluster 2.

The Link86 Input option was used to link cluinit,

trkdetec, msltrain, and gatemod into CIUSERS; c2uinit,

trkrprt, mslorder, and gatemod into C2USERS for

constellation 1.) and 2.).

For constellation 3.) following linkage was done:

* trkdinit, trkdetec, and gatemod into TRACKER,

msltinit, msltrain, and gatemod into MSLREACT,

trkrinit, trkrprt , and gatemod into REPORTER, and

msloinit, mslorder, and gatemod into MSLORD.

This demonstration program, even though done by one

person, was built under a s4.mulated lead programmer team

policy. The lead programmer provided the system-wide shared

-, data declaration, the system definitions, the cluster

specific relation data, pointer assignments, and systems

initialization. The lead programmer also decided about the

distribution of the different modules over the system.

The application programmers built their modules

%including the share.dcl and pointer.ass files.

95



-7 .fD- 4 8" PROCESS SYNCHRONIZATION AND DATA COMMUNICATION BETUEEN 2/2
PROCESSES IN REAL TIME LOCAL AREA NET&IORKS(J) NAVAL

I POSTGRADUATE SCHOOIL MONTEREY CA R HAE6ER DEC 85IUNCLSSIFIE EDG 172 U



LI-

III/ 
//11 

lIIII/"

MICROCOPy RESOLUTION TEST CHARTNAMrONAL BUREAU OF STANDARDS-1963-A

r4p

wIw

i.4i!



C1USFRS.INP file

** This file is used to link user initialization,
user process msltrain, user process trkdetec, and

**2P atemodule into C1USERS.CMD, the executable file
* r multiplexinR the two user vrocesses on one SBC.

clusers =
cluinit [code(ab[4391].data[ab[8001,m[ ,ad[E211,maD(all]].
trkdetec,
msltrain,
Ratemod

CIUINIT.PLI file

*• This is the initialization procedure for the
*** !-multiDlexed user constellation.

clusersinit: Drocedure options (main);

%include 'sysdef.pli';

/* begin */

/* trkdetec */
call createproc (''5b4 "fc'b4,

'0eb'b4, '0800'b4, "@029'b4,
-0439"b4, '02@7'b4, '800'4);

I* r sltrain *I
call create proc ('06'b4, fc'b4,

.OaO-b b4, "OBO@'b4, "02fA5'b4.
'04:39 'b4, '180 'bl, 08-30'b4);

call await ('fe'b4, "01'b4);
end clusers _iit;

96

Fm-.

*. *. .
, * .*.-..*



*2P* TRACKER.INP file

*** This file is used to link trkdetec initialization, *
# user process trkdetec, and gatemcdule into.

TRACKER.CMD, the executable file for user process
* trkdetec in the non-multiplexed constellation.

tracker =
trkdinit [code [ab[43911,data(ab[800],m[0],ad[82]],map[alil],
trkletec,
Ratemod

TRKDINIT.PLI file

** This is the initialization procedure for user
* * process trkletec in the non-multiplexed
** constellation. V

trklinit: procedure options (main);

%include 'sysdef.pli";

/* begit */
call create proc ('01"b4, "fc'b4,

'085d'b4. "0800'b4, '0023'b4.
'0439'b4. '0800'b4. '800'b4);

call await ('fe'b4, '31'b4);

end trkdinit;

MSLREACT.INP file
-----------------------------------------------------
** This file is used to link msltrain initialization, *P
%* user process msltrain, and eatemodule into

*~ MSLREACT.CMD. the executable file for user process **
* msltrain in the non-multiplexed constellation.

mslreact =
msltinit [code(ab[ 39]],data(ab[8901,m(1,ad[821l,ma(alll!.
msltrain,
eatemod

97



MSLTINIT.PLI file

•* This is the initialization procedure for user
process msltrain in the non-multiplexed

$ $ constellation.

msltinit: procedure options (main);

%include 'sysdef.Dli';

4 /* begin IQ/

call createDroc ('02'b4:, 'fc'b4,
'0825'b4, "OPO'b4, '0023'b4,

'\ ' "0439 "b4, "?81?0"b4 "'0800"b4) ;

end call await ('fe'b4, '01'b4);
end msltinit;

TRKDETEC.PLI file R. Haeger, Dec 1985 *

"** This is the PL/I-86 code for user process tr .detec. **
* * rt simulates track detection by incrementing track **

l Position values every iteration. It produces shared
data TRACK.- *****'***)***********************************************

trkIetect: procedure ;

.revlace

infinity by 32767

one by 'OeI b4,
talen by 50;

%include 'sysdef.pli';
%include share.dcl;

/* used shiared data:
1 track(0:49) based(trptr),

2 x fixed bin (15),
2 y fixed bin (15),
2 z fixed bin (15), */

"'" 96
:; V

S.O~



DECLARE

i fixed bin (15),
(k,tq-ub,to ib) bit (16),
1 local-track,

2 x fixed bin (15),
2 y fixed bin (15),
2 z fixed bin (15);

/* main */
%include 'pointer.ass';

do i = 0 to infinity;

/* simulation of track inDut data */
local track.x=i+l;
local track.y=i+10;
local track.z=i+1;

/* put track in shared memory */
track(nod(i,tolen)) = localtrack;
call advance (TRACK IN);
tqub = read(TRACKIN)

/* display track values */
put skip(2) edit ('Track ',binaryto_ub),

x: ,local track.x,
yl

y: ',local track.y,
"z: ,localtrack.z,
put in aueue slot ',mod(itolen))

(4(a,f(5)));
to lb = read (TRACK OUT);

/* report status */
put skio(2) edit('Last consumed track ",binary(ta_lb),

" in slot: ',mod(birary(tq_lb)-1,talen))
(2(a,f(5)));

/* check if slot available for next iteration *1
if ((binary(taub)-binary(tolb)) >= talen ) then
do;

k = add2bitl6(t _lb,one);
/* report status /
put skip(2) edit ('WaitinR for slot-

mod(binary(k)-1,talen),
to be consumed ") (a.f(3),a);

call await (TRACKOUT, k);
end;

end: /* do FOREVER */

end trkdetect;

i.,

-

%g9 

*



.,

,)************** *********************************************P

MSLTRAIN.PLI file R. Hae~er, Dec 1985 *

*• This is the PL/I-86 code for user process msltrain.

' It simulates missile launcher training by -
*41*displaying launcher assignment and direction values.
S* It consumes shared data MISSILE ORDER. *

msltrain: procedure ;

%replace

infinity by 32767,
one by "001"b4,
moqlen by 50;

%include 'sysdef.Dli';
%include 'share.icl';

S~1* used shared data:
1 missile order(0:49) based(mo_ptr),

2 launcher fixed bin (7),
2 azimuth float binary,
2 elevation float binary, */

DECLARE
i fixed bin (15),

k bit (16) static init ('0000'Wb);
/* end DECLARATIONS */

/* main */
%include 'pointer.ass';

do i = 0 to infinity;
k = add2bitl6(k, one);

/* repcrt status */
put skip list('msltrain waiting');
call await (MISSILEORDER IN, k);

/4 consume and display missile order values 4/

put skip(2) edit('launcher: "
missile orderfmod(i,moolen)).launcher,

launch: ,binary~k),
azimuth:

missile order(iod(imoolen)).azimuth,
elevation:

missile order(mod(i.moqlen)).elevation)
(2(a,fr5)),2(a,e(10,2)));

k 100lS



---*- --- - -- -- -- -- -- - -----

call advance (MISSILEORDEROUT);

end; /* Io i "/

end msltrain;

C2USFRS.INP file

' This file is used to link user initialization,
* user process mslorder, user process trkrprt, and 4

' gatemodule into C2USERS.CMD, the executable file
*,* multiplexing the two user processes on one SBC.

c2users =
c2uinit [code[ab(4391].data[ab[S] .m[£] .ad[e82]1,map[all]]1

.i, mslorder,
trkrprt,
eatemod

C2UINIT.PLI file

" This is the initialization procedure for the
** multiDlexed user constellation.

"2_usersinit: procedure options (main);

%include 'sysdef.pli';

/• begin */

/* missile order '/
call create proc ('03'b4, "fc't4,

"Oa29'b4, '09?B-'b4, "C,29"b4,
'0439'b4, ",?@P'b4, "080Vb4);

I* track report *I
call create_proc ('04'b4, "fc'b4,

'Ob47'b4. 'OSP'b4, "z303'b4,
'0439'b4, '080'b4. 'SB'b4);

call await ('fe'b4, 'Ol'b4);
end c2_usersinit;

.5 l1se

It



REPORTER.IJP file

**= This file is used to li:ik trkrvrt initialization,
''' user process trkrprt, and Ratemodule into
*** REPORTER.CMD, the executable file for user process
•# trkrDrt in the non-multiplexed constellation! i***************************,:c ******** ****** ***********************

reporter=
trkrinit [code[ab[439]],data[ab[800],m([1,ad[8211,rnaD[all1],
trkrprt,
"atem od

T TK?INIT.PLI file *'9

** This is the initialization procedure for user 3"

*~* process trkr rt in the non-multiplexed constellation.2'**

trkrinit: procedure options (main);

Zinclude 'sysdef.Dli';
/* begin */

call create Droc ('14'b4, "fc'b4,
'087f "b4, 00 'b4, '0023'b4,
'0439'b4. '?8 eb4, '80 eb4);

call await ('fe'b4, 31'b4);
end trkrinit;

MSLORD.INP file

SThis file is used to link mslorder initialization, *C.
, user process nslorder, and gatemodule into *

.' * ' MSLORD.CMD, the executable file for user process
'm rslorder in the non-multiplexel constellation.

mslori
msloinit [code[ab[439]1,data[ab[80],m[i],ad[82]J,mao[all]],
mslorder,
patemod

102

6c ,,:, , , ;, ,.w ., "' ? . - , ' . , " \ "- -"• *- "" "' """""-,



MSLOINIT.PLI file

S** This file is the irtialization procedure for user
*• process islorder in the non-multiplexed Constellation***

msloinit: vrocedure ontions (main);

%include 'sysdef.pli';

/* begin */

call create proc ('03'b4, "fc'b4,
'9b3'b4. "9e 0'b4, "0023'b4.
'0439'b4, "OPe0'b4, '0800'b4);

call await ('fe'b4, "'l'b4);
end msloinit;

TRQRPRT.PLI file R. Haezer, Dec 1985

• *This is the P1/I-86 code for user process trkrprt. *"
*AC* It simulates comDutation of delta values for tracks *

by coMvaring two consecutive positions of a track. *
• **It consumes shared data TRACK and .roduces shared
S** data DELTA.

trkrprt: procedure ;

reDlace

infinity by 32767,
one by "WIe'b4,
dolen by 20.
talen by 50;

%include "sysdef.pli';
%include 'share.dcl';

/* used shared data:
1 track(0:49) based(trptr).
2 x fixed bin (15),
2 y fixed bin (15),
2 z fixed bin (15),

103



1 delta(0:19) based(de Dtr),
2 dx fixed bin (7),
2 dy fixed bin (7),
2 dz fixed bin (7), */

DECLARE

i fixed bin (15),
(krn,k) bit (16) static init ('0000'b4),

(lq_ub,d _ib) bit (16).

1 local _track,
2 x fixed bin (15),
2 y fixed bin (15),

"waitinR for slot ",
mod (binary (k)-1 ,dqlen ),
" to be con 2 dy fixed bin (7),

2 dz fixed bin (7);

/* end DECLARATIONS */

* • I* main *I
%include "pointer.ass';

do i = 0 to infinity;
/* report status */

, %-put skip(2) list ('proc trkrprt, iteration:
i,' wait n, ")

"C km = add2bitl6(km, one);
call await (TRACK IN, kin);

"* report status /
put list(" Roin ');

/* read shared data item and compute delta values r/

local delta.dx=(track(mod(italen)).x)-(local track.x);
localdelta.dy=f track(mod(i,talen) ) .y)-(local-t rack.y);
local delta.dz='track(mod(i.talen)).z)-(local track.z);

/* display computed delta values */
put skip list(' x:',local _'Ielta.dx,

- dy:',local-delta.dy,
dz:',local delta.dz);

/* save track data for next iteration /
local track=track(mod(i,talen));

/* put delta in shared memory */
lelta(od(i,dalen))=local-delta;

104

Z .,..



call advance(DELTAIN);

/* report status *

put list(' done )

iQ _ub=read.(DELTAIN);
dq-_lb=read(DELTA _OUT);

/* check if slot available for next iteration *
if ((binary(la _ub)-binary(dq lb)) >= dqlen) then
do;

k=add.2bitl6(do-_lb,one);
/* If aueue is full, report status ~

put skiD(2) edit(flelta aueue full, -
'waiting for slot -
mod(bInary(k)-1.dalen),
Jto be consumed')

a~a~f(3),a);

call await(DELTAOUTk);
end;

end; /* do I *

end trkrort;

MSLORDER.PLI file R. Haezer, Dec 198r5 *c

SThis is the PL/I-B6 code for user process mslorder. *

SIt simulates computation of missile launcher
*'direction and launcher assignment. -

**It consumes shared data TRPCK and DELT., and *C
D* roduces sharel data MISSILE ORDER.

mslorder: procedure;

'Areplace

infinity by 32767,
one by '0001'b4:,

1Ato len by 50,
dalen by 20,
moalen by 50;

%include 'sysdef.pli';
ei)ld 'share.dcl';

105



/* used shared lata:

1 track(0:49) based(trptr),
2 x fixed bin (15).
2 y fixed bin (15),
2 z fixed bin (15).

1 delta(0:19) based(de-ptr),

2 dx fixed bin (7),
2 dy fixed bin (7),
2 dz fixed bin (7),

1 missileorder(0:49) based(moptr),
2 launcher fixed bin (7).
2 azimuth float binary,
2 elevation float binary, "/

DECLARE

i fixed bin (15),
km bit (16) static init ('e£0?'b4),
kd bit (16) static init ('0002Ab_)
moaub,moq _lb) bit (16),

1 local track,
2 x fixed bin (15)
2 y fixed bin (15)
2 z fixed bin (15)

1 local delta,
2 dx fixed bin (7),
2 dY fixed bin (7),
2 dz fixed bin (7),

1 local order,
2 launcher fixed bin (7),
2 azimuth float binary,
2 elevation float binary;

/* end DECLARATIONS */

1I main 

%include "Dointer.ass";
o i = 0 to infinity;

/* retort status /
put skip(2) list('proc mslorder, iteration:

i.' m waiting ");

kd=add2bitl6(kd,one);
call await(DELTA INkd);

106

4-



/* report status *
put list(' ?n _RoinR

'4- 1/* copy track values *
local track=track(mod(i,talen) )
call advarce(TRACKOUT);

/* CODY lelta values */
local _delta=delta(mod(i,dalen));
call advance(DELTA OUT);

/display track values *
put skip list(' x:',local track.x,' y:',local _track.y,

Iz:".local _track'.z);
/* assign launcher */

local _ order.launcher=mod(i,4)+1;
/A9 simulate direction COTnUtation *

local _orler azimuth=
atand(float(local track.y + local lelta.ciy)/

float(local _ track.x +local delta.dx));
local _order.elevation=

atard(float(local _track.z + local delta~dz)/
float(lorcal _track-x + local _ d-alta.dx));

/* Dut Missile order in shared memory *
missile order(modi(i.moalen))=local _order;

/* display missile order values */
put skip list(' l:',local _orler.launcher,

'a:'.local order-azimruth,
-e:'.local order-elevation);

call advance(MISSILE _ORDR _IN);

/* report status ~
put list( ' n _done '

1oo _ub = read(MISSILE _ORDER _IN);

mroq _lb = read (MISS ILE_ CRDFl-CUT);

/* check if slot available for next ireration /
* if ((binery moa _ub)-binary(mnoa _lb))>=moalen ) then

do;
km =add2bitl6(moo lb,one);

/* report if aueue is full *
put ski;p(2) edit('Missile order queue full, '

waitinR for slot,
mod(binarYfkm)-l,moolen),
to be consumed')

call await (MISSILEORDER _OUT. kin);
* end;

end; /* do i *

end islorder;

* 107



APPENDIX F

SYSTEM INITIALIZATION

To switch on and initialize the system, follow these

steps:

(1)

Switch on and set up the hardware components of both
clusters in accordance with the respective power on

procedures described in the AEGIS lab up to the point where

the system disks are in their drives and the reset button of.. . •

the MULTIBUS frame was pushed.

(2)

Insert MCORTEX disks for cluster 1 and cluster 2 in

their respective drives.

(3)

For cluster 1:

* At terminal 1 type in: capital 'U'.

- After prompt type in: 'gffd4:4' followed by RETURN.

After prompt choose console '1' and login disk 'B'.

After prompt B> change to disk A.

After prompt A> type in: 'ldcpm'.

After prompt A> type in: 'ldboot'.

After prompt A> change to disk B.

After prompt B> terminal 1 is ready for MCORTEX.

At terminal 2 type in: capital 'U'.

After prompt type in: 'geOOO:400'.

After prompt choose console '2' and login disk 'C'.

After prompt C> change to disk B.

After prompt B> terminal 2 is ready for MCORTEX.

At terminal 3 type in: capital 'U'.

108

"I a



After prompt type in: 'geOOO:400'.

After prompt choose console '3' and login disk 'D'.

After prompt D> change to disk B.

After prompt B> terminal 3 is ready for MCORTEX.

For cluster 2:

At terminal 1 type in: capital 'U'.

After prompt type in: 'gffd4:0'.

After prompt do the same as in cluster 1 after this

step.

Make sure cluster 1 is connected to the RTC* Ethernet.

System is ready for MCORTEX.

(4)
At cluster 1:

*At terminal 1 type in: 'MCORTEX' followed by RETURN.

System will ask for global memory to be loaded, type in:

'Y' and hit RETURN.

System will ask for filename.

At terminal 2 type in: 'MCORTEX' followed by RETURN.

System will ask for global memory to be loaded, hit

RETURN.

System will ask for filename.

At terminal 3 do the same as at terminal 2.

.-r Cluster 1 is ready for initialization.
At terminal 1 type in: 'C1PROC.CMD' and hit RETURN.

The driver will prompt with length of longest queue, and

signal that cluster 1 is initialized.

Cluster 1 is ready for the application processes.

Initialize cluster 2 the same way as cluster 1, but type

in: 'C2PROC.CMD' instead of 'CIPROC.CMD'.

After driver prompts, the system is ready for

a. application processes.

109



Following, the Initialization of the demonstration

program's non-multiplexed constellation is described.

(5)

At cluster 2:
At terminal 2 type in: 'MSLORD.CMD'.

User process MSLORDER will start executing.

At terminal 3 type in: 'REPORTER.CMD'.

User process TRKRPRT will start executing.

At cluster 1:

At terminal 3 type in: 'MSLREACT.CMD'.

User process MSLTRAIN will start executing.

At terminal 2 type in: 'TRACKER.CMD'.

User process TRKDETEC will start executing.

The total system will run.

(6)

Every terminal displays respective data on its screen.

Terminals 1 in both clusters show message exchange

activity 'transmitting' or 'receiving'.

(7)

To stop any process, hit 'Control S' at the respective

terminal. To restart the process hit 'Control S' again.

110

64

(N -M

WVl



LIST OF REFERENCES

1. Brewer D.J.,A Real-Time Executive for
Multiple-Computer -Clusters, M.ST11hesis, NaV-Wt
ros graduate School, rinuerey, California, December
1984

2. Swan, R.J., and others CM* - A Modular
AMulti-microprocessor, Proedff& of the NiAtional

C..omputer Conference, l97T

3. Reed, D.P. and Kanodia, R.J., "Synchronization with
Event counts andSequencers," Communicat ion of the ACM,
Volume 22, p. 115- 23, February t99

4. Wasson, W.J. Detailed Design of the Kernel of a
Real-Tim Mu ocsso gauterfia SNU, -M.S7
Cifoi, Junej 00traut bnoT,---onterey,
CaioniJn 1980.

5. Rapantzikos, .. Detailed Dsgof the Kernel of a
Real-Time Multiproce-ssor 0perating SYstem, ffTST.

Sc~ia I-,---onterey,

Mhsi si N avaJ. ostgrauare S 00 i~Ty

California, tbecember 1981.

7. Klinefelter, S.G.IImplementation of a Real-Time,
Distributed Operating Ssem for a-Multi Computer
System, ' M.S Thesis, Naa rlos~grad Uare -Schl,
Monterey, California, June 1982.

8. Rowe, W.R.,Adaption of MCORTEX to the AEGIS Simulation
Environen 7TS, 1h-esTN y _Vx TP-tgraluate School,
Mionterey, LAiifo,.nia, June 1984.

9. Xerox CorporationThe Ethernet -A Local Area Network:
Data Link and PAk~c _____ r ecirctnveso
t.7Or Septeer 1780

10. InterLAN Corporation,N13010 MULTIBUS Ethernet
Communication Controller user tanu 1,1982.

11. Digital Research,PL/I Language Reference Manual,1982.



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
NavalPostgraduate School
Monterey California 93943

3. Department Chairman, Code 52 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

4. CDR Gary S. Baker, Code 52Bj 1
Department of Computer Science
Naval Post raduate School
Monterey, California 93943

5. Dr. Uno R. Kodres, Code 52Kr 3
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

6. LCDR Reinhard Haeger 3
Ostendstrasse 20
4750 Unna-Massen
West-Germany

7. Daniel Green, Code 20F 1
Naval Surface Weapons Center
Dahlgren, Virginia 22449

8. CAPT J. Donegan, USN 1
PMS 400B5
Naval Sea Systems Command
Washington, D.C. 20362

9. PCA AEGIS Data Repository 1
RCA Corporation
Government Systems Division
Mail Stop 127-327
Moorestown, New Jersey 08057

10. Library (Code E33-05) 1
Naval urface Warfare Center
Dahlgren, Virginia 22449

11. Dr. M. J. Gralia 1
Applied Physics Laboratory
John Hopkins Road
Laurel, Maryland 20707

12. Dana Small 1
Code 8242, NOSC
San Diego, California 92152

13. Dokumentationszentrum der Bundeswehr 1
Friedrich-Ebert-Allee 34
5300 Bonn
West -Germany

112

Z ZI



DT I(

iLt ED


